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Although the evolutionary response to random genetic drift is classically modelled as a sampling process
for populations with fixed abundance, the abundances of populations in the wild fluctuate over time.
Furthermore, since wild populations exhibit demographic stochasticity and since random genetic drift
is in part due to demographic stochasticity, theoretical approaches are needed to understand the role
of demographic stochasticity in eco-evolutionary dynamics. Here we close this gap for quantitative char-
acters evolving in continuously reproducing populations by providing a framework to track the stochastic
dynamics of abundance density across phenotypic space using stochastic partial differential equations. In
the process we develop a set of heuristics to operationalize the powerful, but abstract theory of white
noise and diffusion-limits of individual-based models. Applying these heuristics, we obtain stochastic
ordinary differential equations that generalize classical expressions of ecological quantitative genetics.
In particular, by supplying growth rate and reproductive variance as functions of abundance densities
and trait values, these equations track population size, mean trait and additive genetic variance respond-
ing to mutation, demographic stochasticity, random genetic drift, deterministic selection and noise-
induced selection. We demonstrate the utility of our approach by formulating a model of diffuse coevo-
lution mediated by exploitative competition for a continuum of resources. In addition to trait and abun-
dance distributions, this model predicts interaction networks defined by niche-overlap, competition
coefficients, or selection gradients. Using a high-richness approximation, we find linear selection gradi-
ents and competition coefficients are uncorrelated, but magnitudes of linear selection gradients and
quadratic selection gradients are both positively correlated with competition coefficients. Hence, com-
peting species that strongly affect each other’s abundance tend to also impose selection on one another,
but the directionality is not predicted. This approach contributes to the development of a synthetic the-
ory of evolutionary ecology by formalizing first principle derivations of stochastic models tracking feed-
backs of biological processes and the patterns of diversity they produce.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction and a unifying framework for these three distinct approaches to
Current mathematical approaches to synthesize the dynamics
of abundance and evolution in populations have capitalized on
the fact that biological fitness plays a key role in determining both
sets of dynamics. In particular, while covariance of fitness and
genotype is the basis of evolution by natural selection, the mean
fitness across all individuals in a population determines the
growth, stasis or decline of abundance. Although this connection
has been established in the contexts of population genetics
(Crow and Kimura, 1970; Roughgarden, 1979), evolutionary game
theory (Hofbauer and Sigmund, 1998; Lion, 2018; Nowak, 2006),
quantitative genetics (Doebeli, 1996; Lande, 1982; Lion, 2018)
evolutionary theory (Champagnat et al., 2006), there remains a
gap in incorporating the intrinsically random nature of abundance
into the evolution of continuous traits. Specifically, in theoretical
quantitative genetics the derivation of a population’s response to
random genetic drift is derived in discrete time under the assump-
tion of constant effective population size using arguments based
on properties of random samples (Lande, 1976). Though this
approach conveniently mimics the formalism provided by the
Wright-Fisher model of population genetics, real population sizes
fluctuate over time. Furthermore, since these fluctuations are
themselves stochastic, it seems natural to derive expressions for
the evolutionary response to demographic stochasticity and con-
sider how the results relate to characterizations of random genetic
drift. This can be done in continuous time for population genetic
models without too much technical overhead, assuming a finite

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2021.110660&domain=pdf
https://doi.org/10.1016/j.jtbi.2021.110660
mailto:bobweek@gmail.com
https://doi.org/10.1016/j.jtbi.2021.110660
http://www.sciencedirect.com/science/journal/00225193
http://www.elsevier.com/locate/yjtbi


B. Week, S.L. Nuismer, L.J. Harmon et al. Journal of Theoretical Biology 521 (2021) 110660
number of alleles (Gomulkiewicz et al., 2017; Lande et al., 2009;
Parsons et al., 2010). However, for populations with a continuum
of types, such as a quantitative trait, finding a formal approach to
derive the evolutionary response to demographic stochasticity
has remained a vexing mathematical challenge. In this paper we
close this gap by combining the calculus of white noise with results
on rescaled limits of measure-valued branching processes (MVBP)
and stochastic partial differential equations (SPDE).

Our goals in this paper are twofold: 1) Our first goal is to estab-
lish a novel synthetic framework to study theoretical evolutionary
ecology that simultaneously tracks the dynamics of abundance and
distribution of a quantitative character in response to selection,
mutation and demographic stochasticity. This approach is based
on a SPDE driven by space–time white noise which is found as
the diffusion-limit of a MVBP. We refer to this SPDE model as the
Stochastic Asexual Gaussian allelic model with Abundance dynam-
ics (SAGA). SAGA can be viewed as a generalization of the classical
infinitesimal model with Gaussian mutations that accounts for
stochastic abundance dynamics. Although SAGA itself tracks the
density of abundance across trait-space without explicitly tracking
the evolution of phenotypic moments, many investigations of eco-
evolutionary dynamics are concerned with the dynamics of popu-
lation size, mean trait and trait variance. We therefore apply
heuristics based on the calculus of space–time white noise to com-
pute stochastic ordinary differential equations (SDE) tracking the
dynamics of these three quantities. Investigators then only need
to apply specific models of fitness to these SDE to obtain eco-
evolutionary models. 2) Our second goal is to communicate some
useful properties of space–time white noise, MVBP and SPDE to a
wide audience of mathematical evolutionary ecologists. With these
goals in mind we will not provide a rigorous treatment of any of
these mathematically rich topics. Instead, we introduce a set of
heuristics that only require the basic concepts of Riemann integra-
tion, partial differentiation and some exposure to Brownian motion
and SDE. A concise introduction to SDE and Brownian motion has
been provided by Evans (2014).

Since MVBP are abstract mathematical objects and their rigor-
ous study requires elaborate mathematical machinery, the use of
MVBP in mainstream theoretical evolutionary ecology has been
limited. However, they provide natural models of biological popu-
lations by capturing various mechanistic details. In particular,
MVBP generalize classical birth–death processes, such as the
Galton-Watson process (Kimmel and Axelrod, 2015; Dawson,
1993), to model populations of discrete individuals that carry some
value in a given type-space. Selection can then be modelled by
associating these values with average reproductive output and
mutation can be incorporated using a model that determines the
distribution of offspring values given their parental value. For pop-
ulation genetic models the type-space is the discrete set of possible
alleles individuals can carry. In quantitative genetic models track-
ing the evolution of d-dimensional phenotypes, this type-space is
typically set to the Euclidean space Rd. By starting with branching
processes we can implement mechanistic models of biological fit-
ness that account for the phenotype of the focal individual along
with the phenotypes and number of all other individuals in a pop-
ulation or community. By taking a rescaled limit, we can then use
these detailed individual-based models to derive population-level
models tracking the dynamics of population abundance and phe-
notypic distribution driven by selection, mutation and demo-
graphic stochasticity. Hence, rescaled limits of MVBP provide a
means to derive mathematically tractable, yet biologically mecha-
nistic models of eco-evolutionary dynamics.

For univariate traits (i.e., d ¼ 1) Konno and Shiga (1988),
Reimers (1989), Li (1998) and Champagnat et al. (2006) have
shown that rescaled limits for a large class of MVBP converge to
2

solutions of SPDE. Although cases in which d P 1 can be treated
using the so-called martingale problem formulation (Dawson,
1993), the SPDE formulation provides a more intuitive description
of the biological processes involved. We therefore focus on the case
d ¼ 1 here. This allows us to introduce a concrete set of heuristics
for deriving SDE tracking the dynamics of abundance, phenotypic
mean and phenotypic variance to a wide audience of mathematical
evolutionary ecologists. Following our approach to simplify nota-
tion and develop heuristics for calculations, future work can possi-
bly use the martingale formulation to extend the results presented
here for d > 1 and even for infinite-dimensional traits (Dawson,
1993; Stinchcombe, 2012). Rigorous introductions to SPDE and
rescaled limits of MVBP have been respectively provided by
Da Prato and Zabczyk (2014) and Etheridge (2000).

In this paper we begin in Section 2 by introducing the basic
framework of our approach. We first outline the essential ideas
behind deriving evolutionary dynamics from abundance dynamics
using a deterministic partial differential equation (PDE). We then
review rescaled limits of MVBP and their associated SPDE. In SM
Section 3.3, we introduce an approach to compute SDE tracking
the dynamics of abundance, phenotypic mean and phenotypic
variance. This approach requires performing calculations with
respect to space–time white noise processes and we provide
heuristics for doing so in SM Section 2.1. In Section 2.2 of the main
text, we list these SDE and discuss their consequences for general
phenotypic distributions. We then simplify their expressions by
assuming normally distributed phenotypes. For added biological
relevance, we then incorporate models of inheritance and develop-
ment following classical quantitative genetics (treated in SM Sec-
tion 4). To demonstrate how our framework can be used to
formulate a synthetic theory of evolutionary ecology, in Section 3
we derive a model of diffuse coevolution for a set of S species com-
peting along a resource continuum. The basic approach follows
classical niche theory to develop biological fitness as a function
of niche parameters and niche locations of other individuals in
the community. We then use this model to derive formulas for
selection gradients and competition coefficients. Finally, we inves-
tigate the relationship between selection gradients and competi-
tion coefficients using a high-richness (large S) approximation.

2. The Framework

At the core of our approach is a model of stochastic abundance
dynamics for a structured population in continuous time and phe-
notypic space. From this stochastic equation we derive a system of
SDE for the dynamics of total abundance, mean trait and additive
genetic variance of a population. In particular, our approach devel-
ops a quantitative genetic theory of evolutionary ecology. A popu-
lar alternative to quantitative genetics is the theory of adaptive
dynamics (Dieckmann and Law, 1996; Metz et al., 1996). As
demonstrated by Page and Nowak (2002) and Champagnat et al.
(2006), the canonical equation of adaptive dynamics can be
derived from the replicator-mutator equation, which in turn can
be derived from models of abundance dynamics, revealing a syn-
thesis of mathematical approaches to theoretical evolutionary
ecology. In this section we briefly outline derivations of the
replicator-mutator equation and trait dynamics from abundance
dynamics in the deterministic case. We then extend these formulas
along with related results to the case of random reproductive out-
put (i.e., demographic stochasticity).

2.1. Deterministic dynamics

Finite Number of Types. We start by considering the dynamics of
an asexually reproducing population in a homogeneous
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environment. For simplicity, we first assume individuals are hap-
loid and carry one of K alleles. Each allele corresponds to a growth
rate, allowing us to model the abundance dynamics of alleles in
continuous-time. We then introduce an analogous model for a
quantitative trait. Under these assumptions, the evolution of allele
frequencies due to natural selection can be derived. This, and a few
related approaches, have been provided by Crow and Kimura
(1970). Mutation can be included using a matrix of transition rates.
Specifically, denoting mi the abundance of individuals with allele
i; mi the growth rate of allele i (called the Malthusian parameter
in Crow and Kimura, 1970), lji the mutation rate from allele j to
allele i and assuming selection and mutation are decoupled
(Bürger, 2000), we have

dmi
dt

¼ mimi þ
XK
j¼1

mjlji � milij

� �
: ð1Þ

Starting from this model, we get the total abundance of the
population as N tð Þ ¼Pimi tð Þ, the frequency of allele i as
pi tð Þ ¼ mi tð Þ=N tð Þ and the mean Malthusian fitness of the popula-
tion as �m tð Þ ¼Pimipi tð Þ. Note we have used the abbreviationP

i ¼
PK

i¼1 to simplify inline notation. Observing
P

i;jljimj tð Þ ¼P
i;jlijmi tð Þ, we use linearity of differentiation to derive the dynam-

ics of abundance as

dN
dt

¼
XK
i¼1

mimi þ
XK
i;j¼1

mjlji � milij

� �
¼ �mN: ð2Þ

To derive the dynamics of the allele frequencies p1 tð Þ; . . . ; pK tð Þ,
we use the quotient rule of elementary calculus to find

dpi

dt
¼ mi � �mð Þpi þ

XK
j¼1

pjlji � pilij

� �
: ð3Þ

Two important observations of these equations include: (i) The
time-dependent mean Malthusian fitness �m tð Þ is equivalent to the
population growth rate and thus determines the abundance
dynamics of the entire population. (ii) Selection for allele i occurs
when mi > �m and selection against allele i occurs when mi < �m.
Hence, as mentioned in the introduction, fitness plays a key role
in determining both abundance dynamics and evolution.

Eq. (3) is known in the field of evolutionary game theory as a
replicator-mutator equation (Nowak, 2006). Instead of being
explicitly focused on alleles, the replicator-mutator equation
describes the fluctuations of relative abundances of various types
in a population in terms of replication and annihilation rates of
each type and hence can be used to model dynamical systems out-
side of evolutionary biology (Nowak, 2006).

Continuum of Types. Inspired by Eqs. (1)–(3), we derive an ana-
log of the replicator-mutator equation for a continuum of types
(that is, for a quantitative trait). In particular, we model a continu-
ously reproducing population with trait values x 2 R and an abun-
dance density m x; tð Þ that represents the amount of individuals in
the population with trait value x at time t. Hence, the abundance
density satisfies N tð Þ ¼ R m x; tð Þdx and p x; tð Þ ¼ m x; tð Þ=N tð Þ is the
relative density of trait x which we also refer to as the phenotypic
distribution. The mean trait and trait variance are then given

respectively by �x tð Þ ¼ R xp x; tð Þdx and r2 tð Þ ¼ R �x tð Þ � xð Þ2p x; tð Þdx.
Note we have used the abbreviation

R ¼ Rþ1
�1 to simplify inline

notation.
In analogy with the growth rates mi for Eq. (1) we write m m; xð Þ

as the growth rate associated with trait value x which depends on
the abundance density m. We assume mutation is captured by dif-
fusion with coefficient l=2. Hence, we model the demographic
dynamics of a population and the dynamics of a quantitative char-
acter simultaneously by the PDE
3

@

@t
m x; tð Þ ¼ m m; xð Þm x; tð Þ þ l

2
@2

@x2
m x; tð Þ: ð4Þ

Eq. (4) qualifies both as a semilinear evolution equation and
also a scalar reaction–diffusion equation. Although the general the-
ory of such equations is quite rich, it is also quite difficult (Evans,
2010; Zheng, 2004). Hence, to stay within the realms of technical
tractability and biological plausibility, we require a set of mathe-
matical assumptions which we list in SM Section 1.1. These
assumptions guarantee solutions to Eq. (4) exist for all finite time
t > 0 and, hence, let us investigate the ecological and evolutionary
dynamics of biological populations.

Eq. (4) can be seen as an analog of Eq. (1) for a continuum of
types. By assuming mutation acts via diffusion, the effect of muta-
tion causes the abundance density m x; tð Þ to flatten out across phe-
notypic space. In fact, if the growth rate is constant across x, then
this model of mutation will cause m x; tð Þ to converge to a flat line
in x as t ! 1. Interpreting the trait value x as location in geo-
graphic space, Eq. (4) becomes a well-studied model of spatially
distributed population dynamics (Cantrell and Cosner, 2004).

Although clearly an idealized representation of biological real-
ity, this model is sufficiently general to capture a large class of
dynamics including density dependent growth and frequency
dependent selection. As an example, logistic growth combined
with stabilizing selection can be captured using the growth rate

m m; xð Þ ¼ R� a
2

h� xð Þ2 � c
Z þ1

�1
m y; tð Þdy ¼ R� a

2
h� xð Þ2 � cN tð Þ;

ð5Þ
where a > 0 the is strength of abiotic stabilizing selection around
the phenotypic optimum h; c > 0 is the strength of intraspecific
competition and we refer to R as the innate growth rate (see Sec-
tion 3.3 below). In the language of population ecology,

r ¼ R� a h� xð Þ2=2 is the intrinsic growth rate of the population
(Chesson, 2000). This model assumes competitive interactions
cause the same reduction in fitness regardless of trait value.

The growth rate in equation (5) has a few convenient proper-
ties. First, the effect of competition induces a local carrying capac-
ity on the population, leading to a finite equilibrium abundance
over bounded subsets of phenotypic (or geographic) space. Second,
abiotic selection prevents the abundance density from diffusing
too far from the abiotic optimum. In particular, when
R >

ffiffiffiffiffiffi
alp

=2 > 0; �x 0ð Þ is finite, r2 0ð Þ is non-negative and finite and
N 0ð Þ is positive and finite, this leads to a locally asymptotically
stable equilibrium given by

N̂ ¼ 1
c

R� 1
2

ffiffiffiffiffiffi
al

p� �
; ð6aÞ

�̂x ¼ h; ð6bÞ

r̂2 ¼
ffiffiffiffi
l
a

r
: ð6cÞ

We demonstrate this result in SM Section 1.2. The equilibrial
phenotypic variance predicted by this model coincides with a clas-
sic quantitative genetic result predicted by modelling the com-
bined effects of Gaussian stabilizing selection and the Gaussian
allelic model of mutation (Bürger, 2000; Johnson and Barton,
2005; Lande, 1975; Walsh and Lynch, 2018).

To derive a replicator-mutator equation from Eq. (4), we employ
integration-by-parts and the chain rule from calculus. In particular,
assuming N tð Þ < þ1 for all t > 0, we can pass the time derivative
into the integral to obtain d

dt N ¼ R @
@t m x; tð Þdx. The partial derivative

@
@t m x; tð Þ can be replaced by the right-hand-side of equation (4). The
resulting spatial derivative representing mutation is removed
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using integration-by-parts. The dynamics of p x; tð Þ can then be
obtained by applying the chain rule to @

@t p x; tð Þ ¼ @
@t m x; tð Þ=N tð Þ½ �.

Writing

�m ðtÞ ¼
Z þ1

�1
m m; xð Þp x; tð Þdx ð7Þ

for the population growth rate, we find

dN
dt

¼ �mN; ð8aÞ

@

@t
p x; tð Þ ¼ p x; tð Þ m m; xð Þ � �m tð Þð Þ þ l

2
@2

@x2
p x; tð Þ: ð8bÞ

Eq. (8b) closely resembles Kimura’s continuum-of-alleles model
(Kimura, 1965; Bürger, 2000). The primary difference being that
our model utilizes diffusion instead of convolution with an arbi-
trary mutation kernel. However, our model of mutation can be
derived as an approximation to Kimura’s model, which has been
referred to as the Gaussian allelic approximation in reference to
the distribution of mutational effects on trait values at each locus
in a genome (Lande, 1975; Bürger, 1986, 2000; Johnson and
Barton, 2005), the infinitesimal genetics approximation in refer-
ence to modelling continuous traits as being encoded by an infinite
number of loci each having infinitesimal effect (Fisher, 1919;
Barton et al., 2017) and the Gaussian descendants approximation
in reference to offspring trait values being normally distributed
around their parental values (Bulmer, 1971; Turelli, 2017).

To distinguish this model from previous models of phenotypic
evolution we refer to PDE (4) from which (8b) was derived as the
Deterministic Asexual Gaussian allelic model with Abundance
dynamics (abbreviated DAGA). Later, we will extend this model
to include the effects of demographic stochasticity, which we refer
to as the Stochastic Asexual Gaussian allelic model with Abun-
dance dynamics (abbreviated SAGA).

Evolutionary Dynamics. We now apply DAGA to derive the
dynamics of mean trait �x and phenotypic variance r2. Both of these
dynamics are expressible in terms of covariances with fitness. For
an abundance distribution m xð Þ and associated phenotypic distribu-
tion p xð Þ, the covariance of fitness and phenotype across the popu-
lation is defined by

Cov m m; xð Þ; xð Þ ¼
Z þ1

�1
m m; xð Þ � �mð Þ x� �xð Þp xð Þdx: ð9Þ

Assuming j�x tð Þj < þ1 for all t > 0, we can borrow techniques
used to derive N tð Þ to find the dynamics of the mean trait �x as

d�x
dt

¼ Cov m m; xð Þ; xð Þ: ð10Þ

Eq. (10) is a continuous time analog of the well known
Robertson-Price equation without transmission bias (Robertson,
1966; Price, 1970; Frank, 2012; Queller, 2017; Lion, 2018).
Whether or not the covariance of fitness and phenotype creates
change in �x to maximize mean fitness �m depends on the degree
to which selection is frequency dependent (Lande, 1976). Since this
change is driven by a covariance with respect to phenotypic diver-
sity, the response in mean trait to selection is mediated by the phe-
notypic variance. In particular, since this model ignores the
complexity of genetic architecture, when r2 ¼ 0; �x will not
respond to selection. However, when epistasis and linkage disequi-
librium are present, �x may evolve even when r2 ¼ 0 and
Cov m; xð Þ ¼ 0 (Bulmer, 1980; Gimelfarb, 1989; Bürger, 2000).

From a statistical perspective, if we think of x� �xð Þ2 as a square
error, we can calculate the covariance of fitness and square error
via
4

Cov m m; xð Þ; x� �xð Þ2
� �

¼
Z þ1

�1
m m; xð Þ � �mð Þ x� �xð Þ2 � r2

� �
p xð Þdx:

ð11Þ
Then, following the approach taken to calculate the evolution of

�x, we obtain the dynamics of phenotypic variation as

dr2

dt
¼ lþ Cov m m; xð Þ; x� �xð Þ2

� �
: ð12Þ

In the absence of mutation, Eq. (12) mirrors the result derived
by Lion (2018) for discrete phenotypes. In analogy to the dynamics
of the mean trait, we see that the response in r2 to selection can be
expressed as a covariance of fitness and square error. Just as for the
evolution of �x, this covariance also creates change in r2 that can
either increase or decrease mean fitness �m, depending on whether
or not selection is frequency dependent. The effect of selection on
phenotypic variance can be positive or negative depending on
whether selection is stabilizing or disruptive.

2.2. Extending DAGA to demographic stochasticity

In SM Section 3.4, we extend these results to include the effects
of demographic stochasticity. The idea is to add an appropriate
noise term to DAGA. Hence, we wish to study stochastic partial dif-
ferential equations (SPDE) that provide natural generalizations of
DAGA. Fortunately, rigorous first principle derivations of such SPDE
have been provided by Li (1998) and Champagnat et al. (2006). The
noise terms driving these SPDE are space–time white noise pro-
cesses, denoted _W x; tð Þ, which are random processes uncorrelated
in both space and time. In SM Section 2.1, we provide a set of
heuristics for performing calculations with respect to space–time
white noise including methods to derive SDE from SPDE in analogy
to our derivations of ordinary differential equations (ODE) from
PDE above. Since our aim is to present this material to a wide audi-
ence of mathematical evolutionary ecologists, our treatment of
space–time white noise and stochastic integration deviates from
standard definitions to remove the need for a detailed technical
treatment. However, in SM Section 2.2, we show our heuristics
are consistent with the rigorous infinite-dimensional stochastic
calculus presented by Da Prato and Zabczyk (2014). Using our sim-
plified approach, the reader will only need some elementary prob-
ability and an intuitive understanding of SDE, including Brownian
motion, in addition to the notions of Riemann integration and par-
tial differentiation already employed.

2.3. From branching processes to SPDE

To understand how SPDE can be derived from biological first
principles and how population-level models can be derived from
individual-based models, we provide a brief informal discussion
of measure-valued branching processes (MVBP) (which serve as
individual-based models) and their diffusion-limits (which serve
as population-level models). In particular, denoting dx the unit-
mass representing an individual with trait value x, a population
consisting of individuals with trait values x1; . . . ; xnðtÞ can be repre-
sented by

Xt ¼
Xn tð Þ

i¼1

dxi : ð13Þ

We assume the individuals are fixed in trait-space throughout
their lifetime. Hence, in between branching events x1; . . . ; xn tð Þ are
constant. We also assume an individual born with trait value x at
time t is assigned an exponentially distributed lifetime with rate
q Xt ; xð Þ > 0. We refer to q Xt; xð Þ as the branching rate and assume
continuity with respect to Xt (in the weak topology of finite
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measures, see Etheridge, 2000) and twice differentiability with
respect to x. For simplicity, we assume the species is semelparous
so that parents are replaced with a random number of offspring at
branching events. Hence, population size n tð Þ changes at branching
events. When an individual is born it is assigned probabilities of
producing different numbers of offspring. In particular, an individ-
ual born at time t with trait value x will be given the probability
f j Xt; xð Þ of producing j offspring. However, offpsring are not pro-
duced until the individual branches. This assumption is made for
the sake of notational simplicity since if, for example, probabilities
of offspring numbers were assigned at branching we would need to
track when the individual was born and when it branches. Since
either choice leads to the same diffusion-limit, we continue with-
out loss of generality. Thus, an individual with trait x born at time t
will have expectation and variance in reproductive output given
respectively by

w Xt; xð Þ ¼
X1
j¼0

jfj Xt; xð Þ; ð14aÞ

v2 Xt ; xð Þ ¼
X1
j¼0

j�w Xt; xð Þð Þ2f j Xt ; xð Þ: ð14bÞ

We assume both w Xt; xð Þ and v2 Xt ; xð Þ are continuous in Xt and
twice differentiable in x.

There is often an intimate relationship between w Xt; xð Þ and
v2 Xt ; xð Þ and this observation is particularly important for under-
standing the relationship between deterministic selection and
noise-induced selection. For example, if for each fixed Xt and x
the number of offspring follow a Poisson distribution, then
v2 Xt ; xð Þ ¼ w Xt ; xð Þ. Alternatively, researchers may wish with to
work with birth and death rates. In this case we set
f 0 Xt ; xð Þ þ f 2 Xt ; xð Þ ¼ 1 so that the only possible offspring numbers
are zero, corresponding to death, and two, corresponding to birth.
Then an individual born at time t has birth and death rates given
respectively by

b Xt; xð Þ ¼ q Xt; xð Þf 2 Xt ; xð Þ; ð15aÞ

d Xt ; xð Þ ¼ q Xt ; xð Þf 0 Xt ; xð Þ: ð15bÞ
Furthermore, under the birth–death approach we compute

v2 Xt ; xð Þ ¼ 2w Xt ; xð Þ �w2 Xt ; xð Þ: ð16Þ
Other examples can be easily calculated, but we restrict our atten-
tion to these two distributions of offspring numbers for the sake of
simplicity. We refer to the Poisson case as the Poisson model of
demographic stochasticity and the birth–death case as the birth–
death model of demographic stochasticity.

We assume offspring trait values are normally distributed
around parental trait values with variance l (i.e., the Gaussian alle-
lic model). This assumption implies the Gaussian descendants
approximation coined by Turelli (2017).

To derive a population-level model from this individual-based
model, we start with the initial population X0 and increase the
population size to kn 0ð Þ for some positive integer k. We also rescale
individual contribution to abundance by N0=kn 0ð Þ for some posi-
tive real number N0. In particular, this is done by replacing dxi in
expression (13) with N0dxi=kn 0ð Þ. Hence, in the limit k ! 1 the
total initial abundance remains N0 even though the population of
discrete individuals becomes replaced by a set of infinitesimal indi-

viduals. We write X kð Þ
t as the k-th stage of rescaling of the popula-

tion process Xt and, when it exists, Xt ¼ limk!1X kð Þ
t as the diffusion

limit. The branching rate is rescaled by q Xt ; xð Þ ! kq X kð Þ
t ; x

� �
so

that branching of the infinitesimal individuals occurs instanta-
5

neously in the limit k ! 1. We also rescale mutation by l! l=k
and expected reproductive output by w Xt ; xð Þ ! w1=k X kð Þ

t ; x
� �

. This

last component of our rescaling is the key step our framework uti-
lizes in computing population-level models from individual-based
models. In particular, assuming w Xt ; xð Þ is bounded above in both
Xt and x, Méléard and Roelly (1992, 1993) have shown the contin-
uous time growth rate associated with trait value x at time t can be
calculated as

m Xt ; xð Þ ¼ q Xt; xð Þlim
k!1

k w1=k X kð Þ
t ; x

� �
� 1

� �
: ð17Þ

Assuming the either the Poisson or birth–death models of
demographic stochasticity, this rescaling implies the variance com-
ponent of reproduction in the diffusion-limit becomes
V Xt ; xð Þ ¼ q Xt ; xð Þ, which we refer to as the reproductive variance.
For concreteness, both of these calculations are performed for the

initial conditions X kð Þ
0 following the approach to rescaling outlined

above.
We note that, just as for the individual-based model, determin-

istic and noise-induced selection in the diffusion-limit are interwo-
ven via the branching rate q Xt ; xð Þ. Furthermore, under the birth–
death model of demographic stochasticity we have

m Xt ; xð Þ ¼ b Xt ; xð Þ � d Xt ; xð Þ; ð18aÞ

V Xt; xð Þ ¼ b Xt; xð Þ þ d Xt; xð Þ: ð18bÞ
For details on these calculations, see SM Section 3.1. In SM Sec-
tion 3.2 we describe an approach to simulating the rescaled pro-

cesses X kð Þ
t and illustrate their dynamics for k ¼ 1;5 and 10.

In the diffusion-limit limk!1X kð Þ
t the particle picture of the

individual-based model is replaced by a mass Xt distributed across
R. Given appropriate conditions on w Xt ; xð Þ and v2 Xt ; xð Þ (Konno
and Shiga, 1988; Reimers, 1989; Li, 1998), the mass Xt can be
described by a density m x; tð Þ continuous in both x and t such that

Xt Dð Þ ¼
Z
D
m x; tð Þdx; ð19Þ

for subsets D � R. When the diffusion-limit Xt exists and admits a
density m x; tð Þ, we write m m; xð Þ and V m; xð Þ in place of m Xt ; xð Þ and
V Xt; xð Þ.

In general, diffusion-limits of individual-based models return
so-called superprocesses which track the evolution of abundance
and phenotypic (or geographic) distribution (Etheridge, 2000).
Although the superprocess approach can handle very general
assumptions including multivariate phenotypes and non-
Gaussian mutation, its technical prerequisites are far beyond the
scope of this paper. Fortunately, under our above assumptions, Li
(1998) formally proved the density m x; tð Þ can be described by
the following SPDE which generalizes DAGA,

@

@t
m x; tð Þ ¼ m m; xð Þm x; tð Þ þ l

2
@2

@x2
m x; tð Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V m; xð Þm x; tð Þ

p
_W x; tð Þ: ð20Þ

In particular, we can apply the white noise heuristics developed
in SM Section 2.1 to this SPDE to derive SDE tracking the total
abundance, mean trait and trait variance. We refer to this SPDE
as the Stochastic Asexual Gaussian allelic model with Abundance
dynamics (SAGA). Unfortunately, one of the assumptions used to
show m x; tð Þ satisfies SAGA is boundedness of the growth rate
m m; xð Þ above and below across all possible combinations of
m x; tð Þ and x. However, classical models of resource competition
use growth rates that decrease towards �1 as total abundance
diverges towards þ1. Thus, solutions to SAGA may not exist for
all growth rates of interest. Hence, we proceed informally
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following calculations inspired by SAGA. Future work is needed to
determine the general conditions onm m; xð Þ for which SAGA admits
a solution. Alternatively, one may be able to take the superprocess
approach to justify our calculations. For examples of superprocess
models of competition, see Dawson (1978), Etheridge (2004) and
Evans and Perkins (1994).

2.4. From SPDE to SDE

The simplicity of SAGA allows us to use the white noise heuris-
tics developed in SM Section 2.1 to compute a set of SDE that gen-
eralize Eqs. (8a), (10) and (12) to include the effects of
demographic stochasticity (see SM Sections 3.3 and 3.4). In partic-
ular, we find

dN
dt

¼ �mN þ
ffiffiffiffiffiffiffi
�VN

p dWN

dt
; ð21aÞ

d�x
dt

¼ Cov m; xð Þ � 1
N
Cov V ; xð Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Cov V ; x� �xð Þ2
� �

þ �Vr2
� �r

dW�x

dt
; ð21bÞ

dr2

dt
¼ lþ Cov m; x� �xð Þ2

� �
� 1
N

2Cov V ; x� �xð Þ2
� �

þ �Vr2
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Cov V ; x� �xð Þ2 � r2
h i2� �

þ �V x� �xð Þ4 � r4
� �� �s

dWr2

dt
;

ð21cÞ
whereWN; W�x and Wr2 are standard Brownian motions and barred

expressions such as x� �xð Þ4 are averaged quantities with respect to
the phenotypic distribution p x; tð Þ. Intuitively, one can interpret Eqs.
(21) as if they are ordinary differential equations, but this is not
technically rigorous since Brownian motion is nowhere differen-
tiable with respect to time. In SM Section 3.5 we show that when
V m; xð Þ does not depend on x;WN is independent of both W�x and
Wr2 , but W�x and Wr2 may covary depending on the shape of the
phenotypic distribution p x; tð Þ. However, when the phenotypic dis-
tribution is Gaussian and V m; xð Þ does not depend on x; W�x and Wr2

will also be independent.
Many well known results follow directly from expressions (21).

Firstly, assuming no variance in reproductive output so that V ¼ 0
recovers the deterministic dynamics derived in Section 2.1. Alter-
natively, one can take N ! 1 to recover the deterministic dynam-
ics for �x and r2, which also shows the effect of demographic
stochasticity on evolutionary dynamics diminish when population
size becomes sufficiently large. Characteristically, we find the
effect of demographic stochasticity on per-capita growth rate
diminishes with increased population size. To see this, divide each
side of equation (21) by N. Furthermore, one can apply Itô’s for-
mula to lnN to find increased abundance leads to smoother log-
scale abundance dynamics. From the third term in the determinis-
tic component of expression (21c) we see also the characteristic
effect of random genetic drift eroding heritable variation when
V m; xð Þ is independent of trait value. However, this expression also

shows when the covariance of reproductive variance and x� �xð Þ2 is
sufficiently negative, the component of random genetic drift due to
demographic stochasticity will actually increase heritable varia-
tion. Finally, the second term of equation (21b) and third term of
(21c) show that adaptation is not only mediated by a covariance
between expected reproductive output and trait values, but also
from a covariance between the variance around this expectation
and trait values. Hence, this stochastic extension allows the mod-
6

elling of noise-induced selection. We include this here only for the
sake of completeness. In particular, our model of diffuse coevolu-
tion below assumes constant reproductive variance across trait
values and abundance densities within each species.

These expressions can be used to investigate the dynamics of
the mean and variance for a very general set of phenotypic distri-
butions. However, conditions for the existence of solutions to (21)
are at least as restrictive as those for SAGA. Since, as mentioned
above, the most general form of these conditions are not known,
we do not formally show existence of solutions to (21). However,
our results for DAGA and theorem 2.3 of Evans and Perkins
(1994) suggest that if m m; xð Þ and V m; xð Þ are bounded above, then
N tð Þ; �x tð Þ and r2 tð Þ should remain finite for finite time.

In the next subsection we sidestep the issue of existence by
assuming normally distributed trait values, known as the Gaussian
population assumption (Turelli, 2017). In particular, assuming nor-
mally distributed trait values implies the existence of a mean �x and
variance r2. This assumption also significantly simplifies the
expressions of equations (21), transforming them into powerful
tools for computing eco-evolutionary models. Hence, although
the Gaussian population assumption is very restrictive as a model
of phenotypic diversity and, except for very special cases of growth
rates, is not formally justified, its exceedingly convenient proper-
ties make it an important initial approximation.

2.5. Particular results assuming a Gaussian phenotypic distribution

By assuming normally distributed trait values, expressions (21)
transform into efficient tools for deriving the dynamics of popula-
tions given fitness functions m m; xð Þ; V m; xð Þ. Gaussian phenotypic
distributions can be formally obtained through Gaussian, exponen-
tial or weak selection approximations together with a simplified
model of mutation, genotype-phenotype mapping and asexual
reproduction or random mating (Bürger, 2000; Lande, 1980;
Turelli, 2017, 1986, 1984). Hence, given appropriate assumptions
on selection, mutation and reproduction, the abundance density
m x; tð Þ can be approximated as a Gaussian curve in x. In SM Sec-
tion 5.5, we briefly explore the consequences of relaxing the Gaus-
sian population assumption in the context of resource competition.
In general, we find the Gaussian population assumption provides a
reasonable approximation over short time periods. However, over
longer time periods populations restricted to normally distributed
trait values exhibited trait variances orders of magnitude lower in
comparison to letting the trait distribution evolve freely. Allowing
for these restrictions, we assume

m x; tð Þ ¼ N tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2 tð Þp exp � x� �x tð Þð Þ2

2r2 tð Þ

 !
: ð22Þ

Under this assumption, covariances with fitness can be written in
terms of fitness gradients (see SM Section 3.6). In particular, setting
@�x ¼ @

@�x and @r2 ¼ @
@r2, trait dynamics under the Gaussian population

assumption can then be rewritten as

d�x
dt

¼ r2 @�x �m� @�xmþ @�xV � @�x
�V

	 

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

N
2r2 @r2

�V � @r2V
	 
þ �V

� �r
dW�x

dt
; ð23aÞ

dr2

dt
¼ lþ 2r4 @r2 �m� @r2m

	 
� r2

N
4r2 @r2

�V � @r2V
	 
þ �V

� �
þ r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
N

2r4 @2
r2
�V � 2@r2@r2V þ @2

r2V
� �

þ 4r2 @r2
�V � @r2V

	 
þ �V
h ir

dWr2

dt
:

ð23bÞ

bb
should be divided by N
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From Section 2.3 we know that when selection is due to varia-
tion in expected offspring numbers and not variation in rates of
death and reproduction, the deterministic and stochastic compo-
nents of fitness are decoupled and the effects of noise-induced
selection disappear. In particular, this case implies @�xV ¼ @�x

�V ¼ 0
and @r2V ¼ @r2

�V ¼ 0, greatly simplifying the above expressions.
Equations (23) allow us to derive the response in trait mean and
variance by taking derivatives of fitness, a much more straightfor-
ward operation than calculating a covariance for general pheno-
typic distributions. Note that in the above expressions, the partial
derivatives of �m and �V represent frequency independent selection
and the averaged partial derivatives of m and V represent fre-
quency dependent selection. This relationship has already been
pointed out by Lande (1976) for the evolution of the mean trait
in discrete time without noise-induced selection, but here we see
an analogous relationship holds in continuous time with noise-
induced selection and also for the evolution of trait variance. In
particular, focusing on mean trait evolution, when reproductive
variance is frequency independent so that @�xV ¼ 0, we see noise-
induced selection selects for trait values that minimize V m; xð Þ.
Hence, in general there may be conflicts between deterministic
selection and noise-induced selection. Indeed, previous work has
shown evolutionary responses to noise-induced selection can
reverse the expectations of deterministic theory (Parsons et al.,
2010; Constable et al., 2016).

In SM Section 4 we generalize this result to the case when traits
are imperfectly inherited. In this case, the phenotypic variance r2

is replaced by a genetic variance G. This genetic variance repre-
sents the component of r2 explained by additive effects among
genetic loci encoding for the focal phenotype (Bulmer, 1971;
Roughgarden, 1979; Walsh and Lynch, 2018). It is therefore fitting
that G is referred to as the additive genetic variance. Following
classical quantitative genetic assumptions we find

d�x
dt

¼ G @�x �m� @�xmþ @�xV � @�x
�V

	 

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G
N

2G @G
�V � @GV

	 
þ �V
� �r

dW�x

dt
; ð24aÞ
dG
dt

¼ lþ 2G2 @G �m� @Gm
	 
� G

N
4G @G

�V � @GV
	 
þ �V

� �
þ G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
N

2G2 @2
G
�V � 2@G@GV þ @2

GV
� �

þ 4G @G
�V � @GV

	 
þ �V
h ir

dWG

dt
:

ð24bÞ
From expressions (24) we see that, under our simple treatment

of inheritance, focusing on additive genetic variance G instead of
the variance in expressed traits r2 makes no structural changes
to the basic equations describing the dynamics of populations.
Instead we see the role played by the variance of expressed traits
r2 is now being played by G, except for the effects on growth rate
m m; xð Þ since fitness here is determined by expressed traits. Under
our approach, the two variances are related by r2 ¼ Gþ E, where E
is the environmental variance (Walsh and Lynch, 2018). As a spe-
cial case of our framework, we can further assume that G and N
are constant across time and set V m; xð Þ � 1 to obtain a continuous
time analog of the random genetic drift model introduced by Lande
(1976). In the next section, we make use of the above expressions
to develop a model of diffuse coevolution in a guild of S species
competing along a resource continuum.
3. A model of diffuse coevolution

In this section we demonstrate the use of our framework by
developing a model of diffuse coevolution across a guild of S spe-
7

cies whose interactions are mediated by resource competition
along a single niche axis. Because our approach treats abundance
dynamics and evolutionary dynamics simultaneously, this model
allows us to investigate the relationship between selection gradi-
ents and competition coefficients, which we carry out in Sec-
tion 3.3. For the sake of mathematical tractability, we assume
Gaussian populations so that individual niche locations are nor-
mally distributed within each species.

3.1. Formulation

General formulas for the dynamics of phenotypic distributions
and abundances have been derived above. Thus, the only task
remaining is the formulation of growth rates and reproductive
variances as functions of trait values. For the sake of simplicity,
we ignore noise-induced selection by assuming constant reproduc-
tive variances V m; xð Þ � V > 0 and focus our attention on develop-
ing growth rates as functions of abundance densities and trait
values. Our approach mirrors closely the theory developed by
MacArthur and Levins (1967), Levins (1968) and MacArthur
(1972, 1970, 1969). The most significant difference, aside from
allowing evolution to occur, is our treatment of resource availabil-
ity. In particular, we assume resources are replenished rapidly
enough to ignore the dynamics of their availability. In SM Section 5
we provide motivation for this population-level model from an
individual-based model.

For species i we inherit the above notation for trait value, distri-
bution, average, variance, abundance, etc., except with an i in the
subscript. Real world examples of niche axes include the size of
seeds consumed by competing finch species and the date of activ-
ity in a season for pollinators competing for floral resources. For
mathematical convenience, we model the axis of resources by
the real line R. The trait value x will denote the location along
the niche axis (i.e., x 2 R), �xi the mean niche location of species i
and Gi the additive genetic variance of niche locations for species i.

The Fitness Function. Assuming the effects due to competitive
interactions and abiotic stabilizing selection on the expected
reproductive output of individuals accumulate multiplicatively,
we find in SM Section 5 an expression for the expected reproduc-
tive output (i.e., absolute fitness) of individuals in each species as
functions of their niche location along with the state of the entire
community. Applying equation (17), we arrive at an expression for
the growth rate associated with niche location x in species i as a
function of x and the state of the entire community. Following this,
we assume normally distributed niche locations within each spe-
cies to the find the following explicit expression of the growth rate
associated with trait value x for species i:

mi m; xð Þ ¼ Ri � ai
2

hi � xð Þ2 �
XS
j¼1

cijNj tð ÞUiUj

ffiffiffiffiffiffiffiffiffiffiffi
~bij tð Þ
2p

s
e�

~bij tð Þ
2 x��xj tð Þð Þ2 ;

ð25Þ

where now growth rate depends on m ¼ m1; . . . ; mSð Þ, the S-tuple of
trait distributions describing the community of competing species.
We refer to Ri as the innate growth rate of species i to distinguish it
from the classical intrinsic growth rate ri considered in the field of
population ecology. The parameter ai is the strength of abiotic sta-
bilizing selection for species i around the optimal resource hi and cij
is the impact of resource competition with species j on species i. We
denote the total niche usage of individuals in species i by Ui. The

quantity ~bij tð Þ determines the sensitivity of competition between
species i and j to differences in their niche use. Denoting ki the vari-
ance of niche use for individuals of species i (which we will call the

niche breadth), the quantity ~bij tð Þ decomposes as

bb
should be divided by N
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~bij tð Þ ¼1= ki þ kj þ Ej þ Gj tð Þ	 

: ð26Þ

Again applying our assumption of normally distributed niche
centers, we find the population growth rate of species i, defined

by m
�

i tð Þ ¼ R mi m; xð Þpi x; tð Þdx, can be explicitly expressed as

�mi tð Þ ¼ Ri � ai
2

hi � �xi tð Þð Þ2 þ Gi tð Þ þ Ei

� �

�
XS
j¼1

cijNj tð ÞUiUj

ffiffiffiffiffiffiffiffiffiffiffi
bij tð Þ
2p

r
e�

bij tð Þ
2

�xi tð Þ��xj tð Þð Þ2 : ð27Þ

Similar to ~bij tð Þ, the quantity bij tð Þ determine the sensitivity of com-
petitive effects on species i to differences in niche locations
between species i and j. Specifically, bij decomposes as:

bij tð Þ ¼ 1= ki þ kj þ Ei þ Ej þ Gi tð Þ þ Gj tð Þ	 

: ð28Þ

Further details on the biological motivation and calculation of
growth rates can be found in SM Section 5.
3.2. The Model

In SM Section 5 we combine Eqs. (21a), (24), (25) and (27) to
find

dNi

dt
¼ Ri � ai

2
hi � �xið Þ2 þ Gi þ Ei

� �
�
XS
j¼1

cijNjUiUj

ffiffiffiffiffiffiffi
bij

2p

r
e�

bij
2

�xi��xjð Þ2
( )

Ni

þ
ffiffiffiffiffiffiffiffiffiffi
ViNi

p dWNi

dt
;

ð29aÞ
d�xi
dt

¼ aiGi hi � �xið Þ � Gi

XS
j¼1

cijNjUiUjbij �xj � �xi
	 
 ffiffiffiffiffiffiffi

bij

2p

r
e�

bij
2

�xi��xjð Þ2
 !

þ
ffiffiffiffiffiffiffiffiffiffi
Vi

Gi

Ni

s
dW�xi

dt
; ð29bÞ
Table 1
Values of model parameters used for numerical integration.

Parameter Description Value

S species richness 100
R innate growth rate, see Section 3.3 10:0
h abiotic optimum 0:0
a strength of abiotic selection 0:002
c sensitivity to competition 10�8;10�6

n o
k niche breadth 1:0
U total niche use 1:0
E environmental variance 0:0
l mutation rate 5:0
V reproductive variance 1:0
dGi

dt
¼ li

þ G2
i

X
j–i

cijNjUiUjbij 1� bij �xi � �xj
	 
2� � ffiffiffiffiffiffiffi

bij

2p

r
e�

bij
2

�xi��xjð Þ2 þ ciiNiU
2
i bii

2

ffiffiffiffiffiffiffi
bii

2p

r
� ai

 !

� Vi
Gi

Ni
þ Gi

ffiffiffiffiffiffiffiffi
2Vi

Ni

s
dWGi

dt
:

ð29cÞ

Together, Eqs. (29) provide a synthetic model capturing the
dynamics of abundance and evolution from common biological
mechanisms.

Model Behavior. Despite the convoluted appearance of system
(29), there are some nice features that reflect biological reasoning.
For example, the dynamics of abundance generalize Lotka-Volterra
dynamics. In particular, the effect of competition with species j on
the fitness of species i grows linearly with Nj. However, as biotic
selection pushes �xi away from �xj, the effect of competition with
species j on the fitness of species i rapidly diminishes due to the
Gaussian weights capturing a reduction in niche overlap. These
Gaussian weights have been usefully employed to capture interac-
tion preference in recent investigations of coevolution in mutualis-
tic networks (de Andreazzi et al., 2019; Medeiros et al., 2018;
Guimarães et al., 2017). The divergence of �xi and �xj due to compe-
tition is referred to in the community ecology literature as charac-
ter displacement (Brown and Wilson, 1956). We also see that the
fitness of species i drops quadratically with the difference between
�xi and the abiotic optimum hi. Hence, abiotic selection acts to pull �xi
towards hi.
8

The response in mean trait �xi to natural selection is proportional
to the amount of heritable variation in the population, represented
by the additive genetic variance Gi. However, we have that Gi is
itself a dynamic quantity. Under our model, abiotic stabilizing
selection erodes heritable variation at a rate that is independent
of both Ni and �xi. The effect of competition on Gi is more compli-

cated. When bij �xi � �xj
	 
2

< 1, competition with species j acts as
diversifying selection which tends to increase the amount of heri-

table variation. However, when bij �xi � �xj
	 
2

> 1, competition with
species j acts as directional selection and reduces Gi. In the follow-
ing subsections we demonstrate the behavior of system (29) by
plotting numerical solutions and investigate implications for the
relationship between the strength of ecological interactions and
selection.

Community Dynamics. For the sake of illustration we numeri-
cally integrated system (29) for a richness of S ¼ 100 species. We
assumed homogeneous model parameters across species in the
community as summarized by Table 1. We repeated numerical
integration under the two scenarios of weak and moderate compe-
tition. For the scenario of weak competition we set c ¼ 10�8 and for
the scenario of moderate competition we set c ¼ 10�6. With these
two sets of model parameters, we simulated our model for 105

units of time. For both scenarios, we drew initial mean traits from
a normal distribution centered on zero with unit variance, initial
trait variances r2

i 0ð Þ and initial abundances Ni 0ð Þ from log-
normal distributions such that E lnr2

i 0ð Þ� � ¼ 4; V lnr2
i 0ð Þ� � ¼ 1=2;

E lnNi 0ð Þ½ � ¼ 15 and V lnNi 0ð Þ½ � ¼ 1. To avoid numerical issues, we
replaced Ni with Ni þ 1 when Ni appears in the denominator.
Numerical integration was conducted in Julia using the Differen-
tialEquations.jl package (Rackauckas and Nie, 2017).

Temporal dynamics for each scenario are provided in Fig. 1. This
figure suggests weaker competition leads to smoother dynamics
and increased abundances for the species that persist. Considering
expression (29a) we note that, all else equal, relaxed competition
allows for larger growth rates which promote greater abundances.
From (29a) we also see the per-capita effects of demographic
stochasticity diminish with abundance. Inspecting expressions
(29b) and (29c), we see that larger abundances also erode the
effects of demographic stochasticity on the evolution of mean trait
and additive genetic variance. These effects were already noted in
Section 2.2, and thus are not a consequence of our model of coevo-
lution per se.

In both scenarios, a significant fraction of the community
became extinct before our numerical integration ended (24 species
in both scenarios). However, extinction happens slower under the
scenario of weak competition than under moderate competition.
From inspecting the initial conditions (SM Fig. S2), we see the spe-
cies that go extinct first tend to be the ones with lower initial abun-
dances and lower initial trait variances. Interestingly, the trait
variances of the less abundant species tend to increase above the



Fig. 1. Temporal dynamics of mean trait (top), additive genetic variance (middle) and abundance (bottom) for the scenarios of moderate competition (left) and weak
competition (right). Black lines represent species that persisted to the end of numerical integration. Red lines represent species that became extinct at some time before the
numerical integration ended.
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others. Eq. (28) shows that selection due to competition tends to
decrease with increased trait variance. In response, the mean traits
of these species tend to evolve towards the abiotic optima before
their abundances decrease so far that random genetic drift begins
to dominate. Random genetic drift then causes extreme fluctua-
tions in the mean trait and dramatically reduces the trait variance
just before extinction.

Although Fig. 1 suggests interesting patterns in the dynamics of
abundance and trait evolution, a more formal investigation is
needed to better understand the relationship between them. In
the following subsection we take a step in this direction by approx-
imating correlations between competition coefficients and compo-
nents of selection gradients induced by interspecific interactions.
3.3. The relation between the strength of ecological interactions and
selection

Here we investigate the relationship between competition coef-
ficients, which measure the effect of ecological interactions on
abundance dynamics, with selection gradients, which measure
the magnitude and direction of selection on mean trait and trait
variance. We start by considering the expressions of absolute com-
petition coefficients implied by Eqs. (29). However, it turns out
absolute competition coefficients display some unfortunate beha-
viour with respect to our model. We therefore introduce a slightly
modified form of absolute competition coefficients. We then pro-
vide formula for the components of linear and quadratic selection
coefficients corresponding to the effects of interspecific interac-
tions. Lastly, we use a high-richness (large S) approximation to
determine correlations between competition coefficients and
9

selection gradients across the community. Associated calculations
are provided in SM Section 6.3.

Competition coefficients. Relating our treatment of resource com-
petition to theoretical community ecology, the absolute competi-
tion coefficient ~aij, which measures the effect of species j on the
growth rate of species i (sensu Chesson, 2000), becomes a dynam-
ical quantity that can be written as

a
�
ij tð Þ ¼ cijUiUj

ri tð Þ

ffiffiffiffiffiffiffiffiffiffiffi
bij tð Þ
2p

r
exp

�
� bij tð Þ

2
�xi tð Þ � �xj tð ÞÞ2
� �

; ð30Þ

where

ri tð Þ ¼ Ri � ai
2

�xi tð Þ � hið Þ2 þ Gi tð Þ þ Ei

� �
; ð31Þ

is the intrinsic growth rate of species i. Then, dNi tð Þ can be
expressed as

dNi

dt
¼ ri 1�

XS
j¼1

~aijNj

 !
Ni þ

ffiffiffiffiffiffiffiffiffiffi
ViNi

p dWNi

dt
: ð32Þ

Following our model, the classically defined absolute competi-
tion coefficient for species i is parameterized with the intrinsic
growth rate of species i appearing in the denominator. In turn,
these intrinsic growth rates depend on the balance between the
innate growth rate Ri and the effect of abiotic stabilizing selection.
However, this balance further depends on mean trait and additive
genetic variance, which evolve freely. This leads to the potential for
the signage of ri to switch between positive and negative which
implies the potential for infinite absolute competition coefficients.
Furthermore, we see these competition coefficients are influenced
by abiotic stabilizing selection instead of solely capturing the
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effects of inter/intraspecific interactions. Hence, we find it neces-
sary to introduce a modification of the absolute competition coef-
ficient ~aij that avoids these caveats. In particular, we define

aij ¼ ri~aij ¼ cijUiUj

ffiffiffiffiffiffiffi
bij

2p

r
e�

bij
2

�xi��xjð Þ2 : ð33Þ

We call aij the specific competition coefficient mediating the
effects of species j on the growth rate of species i. Under this
parameterization, the abundance dynamics of species i is now
expressed as

dNi

dt
¼ ri �

XS
j¼1

aijNj

 !
Ni þ

ffiffiffiffiffiffiffiffiffiffi
ViNi

p dWNi

dt
: ð34Þ

Selection Gradients. Linear and quadratic selection gradients
have been defined by Lande and Arnold (1983). While the linear
selection gradient b measures the effect of selection on mean trait
evolution, the quadratic selection gradient cmeasures the effect of
selection on additive genetic or phenotypic variance. Since these
quantities are classically defined with respect to discrete-time
models of trait evolution, we provide the analogous definitions
for continuous-time models in SM Section 6.1. Following our
model of diffuse coevolution, we then show these selection gradi-
ents can be additively partitioned into components due to interac-
tions with each species and abiotic stabilizing selection. In
particular, we find the components of linear and quadratic selec-
tion gradients for species i induced by species j are given respec-
tively by

bij ¼ cijUiUjNjbij �xi � �xj
	 
 ffiffiffiffiffiffiffi

bij

2p

r
e�

bij
2

�xi��xjð Þ2 ; ð35aÞ

cij ¼ cijUiUjNjbij 1� bij �xi � �xj
	 
2� � ffiffiffiffiffiffiffi

bij

2p

r
e�

bij
2

�xi��xjð Þ2 ; i– j; ð35bÞ

cii ¼
ciiNiU

2
i bii

2

ffiffiffiffiffiffiffi
bii

2p

r
; i ¼ j: ð35cÞ

With these expressions, the dynamics of mean trait and additive
genetic variance simplify to

d�xi
dt

¼ Gi ai hi � �xið Þ þ
XS
j¼1

bij

 !
þ

ffiffiffiffiffiffiffiffiffiffi
Vi

Gi

Ni

s
dW�xi

dt
; ð36aÞ
Fig. 2. Heatmaps of the correlation between the magnitude of linear selection gradients
competition coefficients (right) as functions of community-wide variance of mea
k ¼ 1:0; �c ¼ 10�7; Vc ¼ 0:0; �U ¼ 1:0; VU ¼ 0:0; �N ¼ 1:0� 105, and VN ¼ 100:0.
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dGi

dt
¼ li þ G2

i �ai þ
XS
j¼1

cij

 !
� Vi

Gi

Ni
þ Gi

ffiffiffiffiffiffiffiffi
2Vi

Ni

s
dWGi

dt
: ð36bÞ

High-Richness Approximation. We now make use of the expres-
sions derived for competition coefficients and selection gradients
to investigate their relationship. As a first pass, we assume the
niche-breadths ki and intraspecific variances r2

i are equivalent
across species so that the sensitivity parameters

bij ¼ 1= ki þ kj þ r2
i þ r2

j

� �
¼ b are constant across interacting pairs

of species. We also assume abundances Ni, niche-use parameters
Ui, strengths of competition cij and mean traits �xi are distributed
independently of each other with respective means and variances
denoted by �N; VN; �U; VU ; �c; Vc; ��x; V�x. We further assume that
richness S is large and the distribution of mean trait values is
approximately normal.

Under these assumptions we obtained analytical expressions
for the correlations between specific competition coefficients aij

and selection gradients bij; cij. These calculations are provided in
SM Section 6.3. In particular, we found linear selection gradients
and competition coefficients lacked a linear statistical relationship
(Corr a; bð Þ ¼ 0). However, we did find a linear relationship
between the magnitudes of linear selection gradients and compe-
tition coefficients (Corr a; jbjð Þ – 0) and also between quadratic
selection gradients and competition coefficients (Corr a; cð Þ– 0).
Their expressions can be found in SM Section 6.3.

To understand if correlations between competition coefficients
and selection gradients tend to be positive or negative, we visual-
ized these relationships in Fig. 2. We fixed k; �c; Vc; �U; VU ; �N and
VN and allowed the amounts of intraspecific trait variance r2 and
interspecific trait variance V�x to vary. We found absolute values
of linear selection gradients and quadratic selection gradients tend
to be positively correlated with competition coefficients. Hence, if
we know of competing species that strongly affect each others
abundances then we can guess they also impose directional and
diversifying selection on one another. However, based on this
information alone, we cannot guess at the direction of selection.
4. Conclusion

We have introduced a novel approach to compute eco-
evolutionary models using the calculus of space–time white noise
and diffusion-limits of individual-based models and coined SAGA,
and competition coefficients (left) and between stabilizing selection gradients and
n trait values V�x and intraspecific trait variances r2. In both plots we set
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a SPDE model of phenotypic evolution that accounts for demo-
graphic stochasticity. Numerical implementations of SAGA allow
the investigation of general evolving phenotypic distributionswith-
out tracking specificmoments. However, since population size, trait
mean and additive genetic variance are key descriptors of biological
populations, we calculated from SAGA a set of SDE tracking the
dynamics of these three quantities. Without assuming Gaussian
trait distributions, the SDE for the mean and additive genetic vari-
ance are expressible in terms of the covariance between trait values
and growth rate and the covariance between trait values and repro-
ductive variance. However, working directly with covariances
between fitness and phenotype will likely be challenging in most
cases. By assuming Gaussian trait distributions, the SDE for the
mean trait and additive genetic variance become expressible in
terms of gradients of growth rate and reproductive variance,
thereby providing efficient analytical tools for computing stochas-
tic eco-evolutionary models. These SDE provide a continuous-
time generalization of the classical approach introduced by Lande
(1976) by allowing stochastic dynamics of abundance and trait
variance and incorporating noise-induced selection.

To illustrate the relevance of our approach to studies of evolu-
tionary ecology, we combined our SDE with classical competition
theory to derive a model of diffuse coevolution. We then used this
model to investigate the relationship between standardized selec-
tion gradients and competition coefficients. We found absolute val-
ues of linear selection gradients and raw values of quadratic
selection gradients are positively correlated with competition coef-
ficients. In the process, we derived expressions for competition
coefficients and components of selection gradients due to pairwise
interactions as functions of niche-use parameters (niche breadth,
total use and mean and variance of niche location), strength of
competitive interactions and abundance.

Although the framework outlined here holds great potential for
developing a synthetic theory of coevolving ecological communi-
ties, there are two technical gaps in the mathematical foundations
of our approach. Firstly, we were unable to derive formal condi-
tions under which trait means and variances remain finite for finite
time. However, a result due to Evans and Perkins (1994) shows
that the diffusion-limit for a pair of interacting individual-based
processes following our simple niche-based treatment of competi-
tion exists when growth rates, as functions of trait values and
abundances, are bounded above. This result can be easily extended
to finite sets of competing species and therefore formally estab-
lishes the existence of abundances as diffusion processes. Further
work is needed to determine the conditions under which trait
means and variances exist as diffusion processes. The models stud-
ied here provide likely sufficient conditions. In particular, since dif-
fusive mutation does not lead to ‘‘heavy-tailed” phenotypic
distributions, we expect the mean trait and trait variance to remain
finite so long as total abundance is positive, given finite initial val-
ues for trait mean and variance. That is, since we have not included
any processes that would cause blow-up either in mean trait or
trait variance, we expect solutions of the SDE (21) to exist for all
finite time t such that N tð Þ > 0 when j�x 0ð Þj;r2 0ð Þ < þ1. This
assumption appears especially well-founded under quadratic sta-
bilizing selection. Since fitness indefinitely decreases as individual
trait value becomes indefinitely large (see Eq. (27)), the diversify-
ing effects of mutation and competition will eventually be over-
whelmed by stabilizing selection. Hence quadratic stabilizing
selection prevents the abundance densities of populations from
venturing indefinitely far from their phenotypic optima.

Secondly, although SDE calculated under the assumption of nor-
mally distributed phenotypes provide particularly useful formula
by replacing covariances between fitness and phenotype with gra-
dients of growth rate and reproductive variance, this assumption is
11
mathematically rigorous only under deterministic dynamics and
when the growth rate is a linear or concave-down quadratic func-
tion of trait value. However, following our model based on classical
competition theory, we found the associated growth rate is highly
non-linear which implies trait distributions may evolve to become
non-normal. While this extreme non-linearity is mathematically
inconvenient, it also captures important biological details (such
as the decay of competition with niche divergence) and thus allows
for a more realistic model of community dynamics. In spite of this
inconsistency in our model formulation, we found resulting
dynamics under the assumption of normally distributed trait val-
ues retained well-founded biological intuition. In addition, a brief
numerical exploration suggests the Gaussian population assump-
tion may hold when population sizes and trait variances are suffi-
ciently large and when the strength of intraspecific competition is
equal to the strength of interspecific competition for each species
(see SM Section 5.5). Furthermore, previous work in the field of
theoretical quantitative genetics has demonstrated the assumption
of normally distributed trait values is robust to fitness functions
that select for non-normal trait distributions when inheritance is
given a more realistic treatment and when populations reproduce
sexually (Turelli and Barton, 1994; Barton et al., 2017). However,
since the maintenance of heritable variation in sexually reproduc-
ing populations is still poorly understood (Bürger, 2020), it is com-
monplace to assume the additive genetic variance G is constant
across time. Hence, future work is needed to extend our approach
to account for sexual reproduction, more realistic models of inher-
itance and to investigate the community-level consequences of
non-normally distributed trait values.

Overall, this work demonstrates that connecting contemporary
theoretical approaches of evolutionary ecology with some funda-
mental results in the theory of measure-valued branching pro-
cesses and their diffusion-limits allows for the development of a
flexible approach to synthesizing the dynamics of abundance and
distribution of quantitative characters. In particular, Eqs. (21a)
and (24) provide a fundamental set of equations for deriving
stochastic eco-evolutionary models involving quantitative traits.
However, these equations require an expression for growth rates
and reproductive variances associated with each trait value. Con-
veniently, Eq. (17) provides a means to derive such expressions
from individual-based models. Taken together, these results pro-
vide a means to derive analytically tractable dynamics from mech-
anistic formulations of fitness as a function of phenotype. The
motivation for our model of diffuse coevolution, located in SM Sec-
tion 5, demonstrates how to derive eco-evolutionary models
involving a set of interacting species from biological first princi-
ples. Hence, this work provides a novel set of mathematical tools
and a tutorial for their use in theoretical studies of evolutionary
ecology, paving the way for future work that provides a holistic
theoretical treatment of coevolving ecological communities.
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