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Abstract

Coevolution has long been thought to drive the exaggeration of traits, promote major evolution-
ary transitions such as the evolution of sexual reproduction and influence epidemiological dynam-
ics. Despite coevolution’s long suspected importance, we have yet to develop a quantitative
understanding of its strength and prevalence because we lack generally applicable statistical meth-
ods that yield numerical estimates for coevolution’s strength and significance in the wild. Here, we
develop a novel method that derives maximum likelihood estimates for the strength of direct pair-
wise coevolution by coupling a well-established coevolutionary model to spatially structured phe-
notypic data. Applying our method to two well-studied interactions reveals evidence for
coevolution in both systems. Broad application of this approach has the potential to further
resolve long-standing evolutionary debates such as the role species interactions play in the evolu-
tion of sexual reproduction and the organisation of ecological communities.
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INTRODUCTION

Our current understanding of coevolution’s importance rests
upon methods that fall into two general classes: those that are
broadly applicable but yield only qualitative evidence for
coevolution and those that produce quantitative estimates for
the strength of coevolution but can be applied only in a nar-
row range of systems. For example, one popular approach for
inferring coevolution relies on measuring the spatial correla-
tion between traits of interacting species and using significant
interspecific correlations as evidence of a coevolutionary pro-
cess (Berenbaum et al. 1986; Hanifin et al. 2008; Toju 2008;
Pauw et al. 2009). Strengths of this approach include the rela-
tive ease of collecting the relevant data and its broad applica-
bility to a wide range of species interactions. The critical
weakness of this approach, however, is that significant inter-
specific correlations are neither necessary nor sufficient for
demonstrating coevolution (Nuismer et al. 2010; Janzen 1980).
Similarly, time-shift experiments have been broadly imple-
mented in systems where experimental evolution is a tractable
approach, but do not yield quantitative estimates of the
strength of coevolution (Koskella 2014; Blanquart & Gandon
2013; Gaba & Ebert 2009). In contrast, more quantitative
approaches such as selective source analysis, a method that
additively partitions selection gradients into independent com-
ponents of selection (Ridenhour 2005), require the collection of
extensive trait and fitness data from interacting species and thus
have proven difficult to employ in all but a few specialised sys-
tems (Brodie III & Ridenhour 2003; Nuismer & Ridenhour
2008; Burkhardt et al. 2012). As a consequence of these trade-
offs in existing approaches, rigorous quantitative estimates of
the strength of coevolution in natural populations are extremely
scarce.
A promising alternative to existing approaches is the devel-

opment of model-based inference methods that use easily

collected phenotypic data to estimate the significance of well-
established coevolutionary models and hence to test for the
significance of coevolution. In particular, coevolutionary mod-
els now exist that predict the statistical distribution of traits
across multiple populations for a pair of interacting species
that evolve in response to random genetic drift, abiotic selec-
tion, and coevolution (Nuismer et al. 2010). Crucially, these
models predict that the distribution of local population trait
means in the interacting species across a metapopulation will
approach a bivariate normal distribution entirely described by
five statistical moments: the average value of the key trait in
each species among populations, the variance of the key trait in
each species among populations and the spatial association (co-
variance) between the key traits in each species. The phenotypic
data necessary to calculate these statistical moments can be
visualised as a two-dimensional scatter plot. The phenotypic
data necessary to calculate these statistical moments can be
visualised as a two-dimensional scatter plot where each axis
measures the mean trait value for one of the species. Hence,
each point in the scatter plot corresponds to a pair of mean
traits of the two interacting species within a given population.
Because the models predict a bivariate normal distribution

of traits, calculating the likelihood of observing any particular
set of trait values in a pair of interacting species is straightfor-
ward. With the five statistical moments that describe the
bivariate normal distribution, we can infer up to five model
parameters. The five parameters our method infers includes
strengths of reciprocal selection caused by the focal interac-
tion (the strengths of biotic selection B1;B2), the strengths of
selection due to any other source (the strengths of ‘abiotic’
selection A1;A2) and the optimal offset between trait values
that optimise biotic fitness (d). The parameters quantifying
selection (Bi and Ai) are proportional to the selection gradi-
ents due to the biotic and abiotic components of selection in
each population (see Appendix S1.4). By maximising the
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resulting likelihood with respect to these key parameters, our
method can be used to rigorously test for the presence of
coevolution. Specifically, for a coevolutionary hypothesis to
be supported, reciprocal selection must be demonstrated
(Janzen 1980; Thompson 1994). In our maximum likelihood
framework, this long-standing and widely accepted definition
of coevolution corresponds to demonstrating that both
strengths of biotic selection are significantly non-zero. By per-
forming likelihood ratio tests, support for the coevolutionary
hypothesis can be compared relative to support for the null
hypotheses of unilateral evolution where B1 ¼ 0 or B2 ¼ 0
(also referred to as tracking, see Fig. 1). Due to the nested
structure of these models, the likelihood of coevolution and
the likelihoods of the null models can be directly compared
via likelihood ratio tests. Figure 1 shows that each P-value p1
and p2 must be less than the significance threshold a (we use
a=0.05) to support a coevolutionary hypothesis. Rejecting
either null hypothesis of unilateral evolution automatically
implies the rejection of evolution completely absent of biotic
selection (B1 ¼ B2 ¼ 0) since the likelihood of the this third
null model will always be less than the likelihoods of tracking.
While showing both B1 and B2 are non-zero is necessary for

demonstrating the significance of pairwise coevolution, the
strength of coevolution can most easily be quantified as the
geometric mean of the absolute value of the two biotic selec-
tion strengths: C � ffiffiffiffiffiffiffiffiffiffiffiffiffijB1B2j

p
. If either strength of biotic selec-

tion is zero, and hence coevolution is absent, then C ¼ 0 as
desired and if jB1j ¼ jB2j, then C ¼ jB1j ¼ jB2j. However, our
metric C fails to capture a sense of balance in the forces of
biotic selection. We therefore propose an accompanying mea-
sure based on Shannon entropy that takes this into account.
Setting bi ¼ jBij=ðjB1j þ jB2jÞ we define the balance of coevo-
lutionary selection as

B � ðb1 ln b1 þ b2 ln b2Þ
lnð1=2Þ : ð1Þ

Standardising by ln (1/2) makes 0�B� 1 with B ¼ 1 rep-
resenting perfect balance and B ¼ 0 representing unilateral
evolution. Though the strength and balance of coevolution
can be subjectively inferred upon inspection of the biotic
selection strengths, these two metrics provide a way to quanti-
tatively compare these aspects of coevolution across systems.

MATERIALS AND METHODS

The coevolutionary model

To model the coevolutionary process, we begin by considering
a local population level model of pairwise coevolution. This
model assumes fitness is a function of the environment, the
trait of the focal individual and the trait of the individual
being encountered. In particular, we assume species i has an
optimal phenotype hi that maximises fitness in the absence of
the interaction (the abiotic phenotypic optimum). We define
Ai to be the strength of abiotic selection on species i so that
the abiotic component of fitness (WA;i), as a function of the
trait value zi, is proportional to

WA;i / exp �Ai

2
ðhi � ziÞ2

� �
: ð2Þ

Likewise, beginning from first principles, we derive the bio-
tic component of fitness for an individual of species i. We
assume that biotic fitness is maximised when the trait value of
the focal individual zi is offset from the trait value being
encountered zj by an ideal amount d. We refer to d as the ‘op-
timal offset’. A simple example of an optimal offset comes
from considering the interaction between long-tubed flowers
and the long-proboscid flies that visit them. The biotic com-
ponent of fitness for the fly is maximised when its proboscis is
slightly longer than the nectar tube depth of the flower, allow-
ing the fly to easily extract its nectar reward. The difference
between tube depth and proboscis length that maximises the
flies biotic fitness component is the optimal offset for the fly.
Note how this differs from a ‘bigger is better’ situation com-
monly referred to for the explanation of coevolutionary arms
races. Under the optimal offset model, fitness is a unimodal
function and therefore does not increase indefinitely with lar-
ger (or lesser) trait values. A more general model would allow
different d’s for each species, but since our method can only
infer up to five parameters we make the parsimonious
assumption that both species have the same optimal offset.
Defining Bi to be the strength of biotic selection on species i,
the biotic component of fitness (WB;i) is proportional to

WB;i / exp �Bi

2
ð�zj þ di � ziÞ2

� �
ð3Þ

when biotic selection is weak (jBij � 1). Here, �zj is the within
population average phenotype of species j. Net fitness is given
by the product of the abiotic and biotic components of fitness.
Since the amount by which fitness is proportional to these val-
ues is irrelevant for evolutionary dynamics, we leave them out
here. Detailed derivations are provided in Appendix S1. As

Figure 1 The network structure of hypotheses that can be distinguished

using our approach. Nodes represent the three relevant hypotheses for

coevolutionary inference. Edges represent comparisons labelled by their

p-values. The upper node (in green) represents the coevolutionary

hypothesis in which both strengths of selection induced by the interaction

are non-zero. The pink-coloured nodes represent the hypotheses of

unilateral evolution, or tracking, where one species experiences biotic

selection, but the other does not. By ruling out tracking this approach

automatically rejects evolution completely absent of biotic selection.
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noted above our method infers values for B1, B2, A1, A2 and
d and can thus accommodate most coevolutionary scenarios
including escalation (d6¼0) and matching (d ¼ 0; B1;B2 [ 0).
With a functional form of fitness in hand, we employed the-

oretical quantitative genetics to formally derive the local pop-
ulation model of mean trait dynamics for the two species.
From this local model, we derived the dynamics of the distri-
bution of pairs of mean traits across the metapopulation.
Since our model predicts the metapopulation distribution of
mean-trait-pairs will converge to a bivariate normal (a proof
is given in Appendix S1.8), we are justified in tracking only
the first five moments of the metapopulation distribution.
These are the metapopulation mean traits of each species (l1
and l2), the metapopulation variance of local mean traits for
each species (V1 and V2) and the metapopulation covariance
of local mean traits for the two species (C). For species i, we
denote the additive genetic variance by Gi and the local effec-
tive population size by ni. Results derived in Appendix S1
demonstrate that the five moments change according to the
following recursions:

Dl1 ¼ G1 B1dþ B1ðl2 � l1Þ þ A1ðh1 � l1Þf g ð4aÞ

Dl2 ¼ G2 B2dþ B2ðl1 � l2Þ þ A2ðh2 � l2Þf g ð4bÞ

DV1 ¼ �2A1G1V1 þ 2B2G2ðC� V1Þ þ G1=n1 ð4cÞ

DV2 ¼ �2A2G2V2 þ 2B1G1ðC� V2Þ þ G2=n2 ð4dÞ

DC ¼ B2G2ðV1 � CÞ þ B1G1ðV2 � CÞ � ðA1G1 þ A2G2ÞC:
ð4eÞ

Parameter estimation

After solving for the equilibrium expressions of the first five
moments from equations (4), we use maximum likelihood to
estimate the selection strengths (A1, A2, B1 and B2) and the
optimal offset (d). However, to do so requires more than esti-
mates of mean trait pairs from multiple populations. Back-
ground parameters of the model also need to be estimated.
These include the effective population sizes n1, n2, the optimal
phenotypes favoured by abiotic stabilising selection h1, h2 and
the additive genetic variances G1;G2.
We show in Appendix S1.5 that if ni has been estimated

from multiple locations, these can be included by using their
harmonic mean as the effective population size in our model.
Likewise, if Gi has been estimated from multiple populations,
these can be included by using their arithmetic mean as the
effective additive genetic variance for our model. Finally, the
model used in this manuscript assumes the abiotic optimum is
constant across space. In the associated Mathematica note-
book, we expand the model to formally account for variable
hi. The results of this notebook demonstrate that the two
models are equivalent when variation in hi is small and there-
fore implies that the average abiotic optimum across space

works as the effective abiotic optimum needed to perform
inference. This notebook also implies that our method is read-
ily adaptable for the inclusion of spatially varying optima as
such data become available.
The likelihood is a routine calculation in terms of the first

five moments which are in turn functions of model parameters
ðn1; n2; h1; h2;G1;G2; dÞ and selection strengths ðA1;A2;B1;B2Þ.
In Appendix S2, we show how to invert these expressions to
obtain analytic solutions for the maximum likelihood esti-
mates of selection strengths. Full expressions are provided in
the associated Mathematica notebook. Although our focus is
on finding point estimates for the strengths of biotic selection,
coevolution and coevolutionary balance, we also estimated
uncertainty due to error caused by sampling from the
metapopulation. To do so, we calculated 95% confidence
intervals for each selection strength.

Estimating significance

Denoting the likelihood of the coevolutionary model by Lc

and the likelihood of null model i (for which Bi ¼ 0) by Li,
we compute the log-likelihood difference statistic by

Ki ¼ 2ðlnLc � lnLiÞ: ð5Þ
Denote by FjðxÞ the distribution function of a v2 random

variable with degrees of freedom j. Wilk’s theorem implies the
distribution of Ki is approximately a v2 (Wilks 1938). Since in
each null model we fix just one parameter, the degrees of free-
dom is one for both tests. Thus, the p-value associated with
testing against null hypothesis i (written pi) has the following
approximation

pi � 1� F1ðKiÞ: ð6Þ
If both p1 and p2\0:05 for a given study system, then our

method asserts significant evidence for coevolution exists in
this system. We provide a tutorial for implementing our
approach using the statistical programming language R at the
following url: https://bobweek.github.io/measuring_coevolu-
tion.html

Evaluation of performance

Before applying our maximum likelihood methodology to
specific study systems, we evaluated its performance when
challenged with simulated data. We assessed the Type I error
rate and statistical power of our method across a range of
biotic selection strengths and metapopulation sample sizes.
These analyses were performed by simulating data under the
model with randomly drawn model parameters. Distributions
used for each background parameter are reported in Table 1.
For error rates as functions of biotic selection strengths, sam-
ple sizes were drawn at random from a Poisson distribution
with a mean of 20. Draws were repeated until a sample size of
at least three was obtained. For Type I error rates as func-
tions of unilateral selection we chose one biotic strength to be
zero and set the other to the strength of unilateral selection.
For Type II error rates as functions of the strength of coevo-
lution C, we drew one biotic selection strength from a uniform
distribution on the interval ðC=10; 10CÞ and set the other such
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that their geometric mean equates to C. When calculating
Type II error rates as functions of sample size, strengths of
biotic selection were drawn independently from a uniform dis-
tribution on (0,0.01). A similar approach was taken for calcu-
lating Type I error rate as a function of sample size, except
one or both of the biotic selection strengths were set to zero
at random. If either strength of biotic selection was set to zero
in the simulation and reported significantly non-zero by our
method, a false positive was accumulated. Likewise, if both
strengths of biotic selection were set to some non-zero number
and our method failed to detect coevolution, then a Type I
error was accumulated. This scheme was repeated 10,000
times for each estimated error rate.
Alongside our analyses of error rates, we investigated our

methods ability to accurately infer the strength of coevolution
using simulated data. For each replicate, we simulated pheno-
typic data using the coevolutionary model with known selec-
tion strengths and background parameters drawn from the
same set of distributions as those used for the error rates as
functions of sample size analysis. We then estimated the
strength of coevolution as defined above using our maximum
likelihood approach and compared it against its actual value
via linear regression. Each regression was performed across a
range of sample sizes (Fig. 2). We also extended this analysis
using more general simulations that relax key assumptions
such as the absence of gene-flow and normality of data in
Appendix S3.
Numerical analyses of our methods performance were done

using the statistical programming language R. The scripts are
publicly available at the following Github repository: https://
github.com/bobweek/measuring.coevolution

Measuring coevolution in the wild

We next applied our maximum likelihood approach to two
well-studied species interactions where previous work impli-
cated coevolution as a cause of trait exaggeration and spatial
variability (Pauw et al. 2009; Toju 2011): the mutualism
between the long tongued fly Moegistorhynchus longirostris
and a plant it pollinates Lapeirousia anceps as well as the
antagonism between the camellia plant Camellia japonica and
its seed predator, the weevil Curculio camelliae. In both cases,
the interactions are thought to depend largely on a single key
trait in each species (fly proboscis and plant floral tube
lengths or weevil rostrum length and camellia pericarp thick-
ness). This is a crucial detail as the models upon which our
method is based assume interactions are mediated by a single
trait in each species. Phenotypic data for these systems have

been collected from several populations, providing a sample
of pairs of mean trait values, the core data required by our
method. In addition to the essential phenotypic data, previous
work in both systems provided valuable additional informa-
tion that allowed us to estimate the key background parame-
ters required by our method: the likely trait optima in the
absence of the interaction (the ‘abiotic’ optima), the effective
population sizes for each species (assumed fixed over time and
space), and the effective additive genetic variances for each
species (also assumed to be fixed over time and space).
The long proboscid fly, M. longirostris, resides in lowland

habitats near the coast of South Africa and pollinates a guild
of at least 20 plant species (Manning & Goldblatt 1997).
Among these species, the most widespread is L. anceps, a
long-tubed perennial whose distribution extends outside the
range of M. longirostris (Pauw et al. 2009). We were able to
estimate the likely optimal tube and proboscis lengths for
these species in the absence of this particular interaction.
Using the phenotypic data published by Pauw et al. (2009),
we inferred this parameter for the flower as the average mean
tube length of two populations not visited by the fly. Estimat-
ing the abiotic optima for the fly was more challenging
because we were unable to identify fly populations where the
plant did not co-occur. However, there are data available for
the proboscis lengths in three sister species of M. Longirostris
(41.0 mm for M. braunsi, 11.5 mm for M. brevirostris, and
32.0 mm for M. perplexus) (Bequaert 1935). Since these sister
species do not interact with L. anceps (Barraclough & Slotow
2010), their traits represent potential evolutionary trajectories
that could have been taken by M. longirostris in the absence
of its interaction with L. anceps. Given that none of the three
sister species underwent a similar arms race with some other
flower (which appears likely based on their relatively modest
proboscis lengths), we therefore take these values as rough
approximations of the actual abiotic optimal phenotype for
M. longirostris. Hence, we estimated selection strengths and
significance when the abiotic optimum was set equal to each
of the three trait values and the average of all three. The
result presented in the main text correspond to the average of
all three sister species, but we present the results for all four
abiotic optima in Appendix S4.1. Effective population sizes
have not been estimated for either species. We therefore relied
on the biologically plausible census sizes of 1000 for L. anceps
and 100 for M. longirostris, as suggested by B. Anderson (per-
sonal communications). Since heritabilities for neither of these
traits have been estimated, we relied on within population
phenotypic variances as a rough proxy for the additive genetic
variances in this system.
We complement our analysis of this plant pollinator mutu-

alism with an analysis of the antagonistic interaction between
C. camelliae and C. japonica (Toju & Sota 2005). Female wee-
vils bore holes into the woody pericarps of the camellia to
oviposit. Inside the fruit, weevil larvae feed on the seeds of
the camellia up until the fourth instar, at which time they exit
the fruit and overwinter (Toju & Sota 2005). These two spe-
cies co-occur across Japan, although camellia populations
where the weevil is absent also exist (Toju & Sota 2005). We
were able to establish point estimates of each background
parameter using data from previously published work (Toju

Table 1 Distributions of background parameters used for generating error

rates and regression analyses

Parameter(s) Description Distribution

Ai Strength of abiotic selection Uniform(0,0.01)

d Optimal offset Exp(0.1)

hi Abiotic optima Normal(0,10)

Gi Additive genetic variance Exp(1)

ni Effective population size Exp(0.01)
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et al. 2011a,b) and the fact that male weevil rostrum lengths
could be used as a proxy for the abiotic optimum of the
female weevils since males do not interact with the camellia.
Hence, our method does not inherently require estimates of
abiotic optima to come from populations where the interac-
tion is absent. However, using male traits as a surrogate for
the abiotic optimum assumes that male and female trait val-
ues are either genetically uncorrelated or have reached equilib-
rium. The abiotic optimum for the pericarp thickness of the
camellia was inferred by averaging pericarp thicknesses across
populations where weevils are absent. Heritability of pericarp
thickness has been estimated directly (Toju et al. 2011a) and
can be at least crudely inferred for weevil rostrum length via
estimates of related species (Toju & Sota 2009). We used the
average of these values for each species multiplied by the aver-
age within population phenotypic variances to estimate addi-
tive genetic variances in this system.
To assess the biological significance of the strengths of

coevolution inferred, we compared the distribution of trait
values we would expect in the presence vs absence of

coevolution. This was accomplished by setting both B1 and B2

equal to zero and maximising the resulting restricted likeli-
hood function with the remaining free parameters (A1;A2 and
d). Using a multivariate generalisation of effect size (see
Appendix S4.3), we summarise with a single number the effect
of coevolution in each system.

RESULTS

Evaluation of performance

Regressions of randomly drawn strengths of coevolution onto
those inferred by our method were heteroskedastic with varia-
tion proportional to the strength of coevolution (Bartlett’s test:
p-value <2.22e�16). To rectify this, we used weighted least
squares. For each point in the regression, we set its weight equal
to the inverse of its Euclidean distance to the origin. Analysis of
regression results demonstrates that at low sample sizes our
method tends to overestimate the strength of coevolution, but
this bias rapidly diminishes with sample size (see Fig. 2).
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Figure 2 Top row: Performance of parameter estimation as a function of sample size. The left-hand panel shows the slope of the regressions converging

near one as sample size increases. The right-hand plot shows the per cent variance explained (R2) increasing with sample size. Lower two rows: Error rates

as functions of sample sizes and selection strengths. The left-hand column shows the Type I and Type II error rates as functions of sample size. The right-

hand column shows Type I error as a function of the strength of tracking (i.e. unilateral selection where the species being tracked does not experience

biotic selection) and power as a function of the strength of coevolution.
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False positive rates are greatly exaggerated for small sample
sizes (e.g. <5), modestly inflated for sample sizes between
5�10, but approach their set value (0.05) for sample sizes >10
(Fig. 2). This behaviour is attributable to two factors. First,
statistical artefacts accumulate in sample moments for small
sample sizes. For example, the correlation of a sample of size
two will always be �1. Second, the distribution of our
p-values may significantly diverge from a Chi-square distribu-
tion at small sample sizes (Wilks 1938). We therefore suggest
this method only be used for sample sizes of at least five.
Another important caveat, however, is that as biotic selection
becomes increasingly imbalanced under the null scenario when
one strength is zero and the other set to some non-zero num-
ber, the false positive rate increases monotonically (see
Fig. 2). Hence, our method can be tricked by extreme unilat-
eral selection.
Power to detect coevolution is reasonably high at low sam-

ple sizes (�0.9) and increases monotonically with sample size.
As a function of the strength of coevolution, power is initially
negligible but increases quickly and monotonically.

Measuring coevolution in the wild

We found that the biotic selection strengths B1 and B2 acting
on M. longirostris and L. anceps both differ significantly from
zero (Table 2). Thus, our analysis supports the hypothesis of
pairwise coevolution in this system. Likewise, both B1, the
strength of biotic selection on the weevil, and B2, biotic selec-
tion on the camellia plant, significantly differed from zero.
Hence, we also found evidence for pairwise coevolution
between the seed-eating weevil C. camelliae and its host plant
C. japonica. For numerical estimates of biotic selection
strengths, p-values and the strength and balance of coevolu-
tion, see Table 2. Cross-system comparison of biotic selection
strengths is visualised in Fig. 3.
In addition to providing information on the magnitude

and significance of coevolution, we quantified the extent of
trait exaggeration produced by coevolution by comparing
the equilibrium phenotypic distribution we would expect
with and without the levels of coevolution we estimated
(Fig. 4). This comparison reveals that although the

numerical estimates of coevolutionary selection appear
superficially small, for the camellia–weevil interaction coevo-
lution results in a 111% increase in the mean rostrum
length of the camellia weevil and a 66.0% increase in the
pericarp thickness of the camellia fruit (Fig. 4). For the fly–
flower system, coevolution appears to have caused a 134%
increase in proboscis length and a 34.5% increase in floral
tube depth compared to equilibrium estimates for these val-
ues we predict when coevolution is absent. Using a multi-
variate analogue of effect size, we calculated the effect of
coevolution in each system. We found an effect size of 7.55
for the fly–flower system and an effect size of 3.07 for the
camellia–weevil interaction.

DISCUSSION

Our results demonstrate that coupling existing coevolutionary
models with a maximum likelihood approach allows the
strength of coevolutionary selection to be estimated using rou-
tinely collected phenotypic data. Regression analysis shows
that with sufficient sample sizes we can obtain accurate esti-
mates of the strength and significance of coevolution. Further-
more, our method is robust to modest amounts of gene flow
and weakly non-normal data (Appendix S3).
Applying our method to two textbook examples of pairwise

coevolution, we find strong evidence for significant coevolu-
tion in both systems. This qualitative result is complemented
by quantitative estimates of the strength of coevolution in the
wild. By applying this method to various systems, it will be
possible to obtain an empirical distribution of the strength of
coevolution in nature. After the appropriate transformation
(analogous to standardising selection gradients with respect to
phenotypic distributions) such data will allow for a meta-ana-
lysis akin to (Kingsolver et al. 2001; Siepielski et al. 2009,
2013) which would provide a yardstick allowing us to further
understand the biological significance of our numerical
results.
In spite of the various merits of our method, there are seri-

ous limitations that must be confronted empirically. Most
notable is the necessity of providing estimates of abiotic
optima. Since these parameters are seldomly estimated for
natural populations, we are restricted in our analysis here to
two data sets in which sufficient information was provided. In
particular, phenotypic measurements in populations that do
not partake in the interaction (due to geographical isolation
or sexual dimorphism) provide reasonable estimates of the
abiotic optima, though other means of estimating these
parameters exist as demonstrated above.
Alongside the empirical work necessary for estimating back-

ground parameters of our model, our results suggest that
increasing the number of populations used in studies of trait
matching would also substantially improve opportunities for
coevolutionary inference. Specifically, we suggest sample sizes
of at least five and ideally more than twenty to avoid Type I
errors. Taken together, these considerations outline a reason-
ably tractable set of sufficient conditions empirical data sets
must meet in order to utilise our method.
Theoretical limitations of our approach stem from its

grounding in classic quantitative genetics and include the

Table 2 Biotic and abiotic selection strengths, optimal offsets, p-values,

and strengths of coevolution and coevolutionary balance for each system.

CW refers to the camellia–weevil system and FF refers to the fly–flower
system. Units of selection strengths are all inverse square phenotypic units

(mm�2 in this case). Optimal offsets (d) are in phenotypic units (mm).

The p-values and balances of coevolutionary selection are unitless.

CW FF

B1 7.17e-04 6.40e-05

B2 5.00e-06 1.84e-06

A1 2.59e-04 7.04e-06

A2 8.05e-06 3.13e-06

d 4.51 14.2

p1 <2.22e-16 <2.22e-16
p2 <2.22e-16 1.19e-07

C 5.99e-05 1.08e-05

B 5.97e-02 1.84e-01
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assumptions of fixed additive genetic variance and weak selec-
tion. Although we do not assume strict equilibrium for each
component population, we do assume that the system as a
whole has reached approximate statistical equilibrium so that
the means, variances and spatial covariance have become rela-
tively constant with respect to time. This implies that pairs of
species for which this method is ideal have been interacting
for a sufficiently long period of time. In reality, however,
empirical systems may be far enough from equilibrium that a
significant contemporary trend in the five moments describing
their distribution should be accounted for. Lastly, our method
assumes the key traits mediating the interaction are univariate
which may not be ubiquitous across coevolving systems.
Future work that generalises our approach to multivariate
traits, strong selection and non-equilibrium (ie, time-series
data) will result in a more broadly applicable method.

By providing a methodology that does not rely on extensive
and system specific experimental manipulation, our approach
greatly expands the range of systems for which the strength of
coevolutionary selection can be estimated, paving the road for
a more quantitative and critical assessment of coevolution’s
importance in natural systems. To add substance to this claim
we provide three examples. First, with finer spatial resolution
in phenotypic data this method can be applied to the same
pair of species across different partitions of their range to
infer the strength of selection mosaics argued to be central to
the coevolutionary process by the Geographic Mosaic Theory
of Coevolution (Thompson 2005). Second, previous investiga-
tions have resulted in mixed views on the significance of pair-
wise coevolution in shaping various aspects of ecological
communities including inter- and intraspecific diversity, demo-
graphic stability, network structure and ecosystem function

20

40

60

80

0 20 40 60 80
Proboscis length (mm)

N
ec

ta
r t

ub
e 

de
pt

h 
(m

m
)

Fly−Flower (FF) System

0

5

10

15

510150
Rostrum length (mm)

Pe
ric

ar
p 

th
ic

kn
es

s 
(m

m
)

Coevolution

No coevolution

Camellia−Weevil (CW) System

Figure 4 The effect of coevolution on the trait distributions predicted by our model. The point in the centre of each contour represents the mean traits of

the species involved. The green contours represent data predicted without coevolution and the pink contours represent the observed data.

Figure 3 The estimated strength of biotic selection for the M. longirostris–L. anceps interaction (pink) and the C. japonica–C. camelliae interaction (green).

Units for each strength are in mm�2, the inverse of the square of the phenotypic units. 95% confidence intervals are shown around each estimate. Each

selection strength was found to be statistically significant and hence coevolution was detected in both systems.
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(Iwao & Rausher 1997; Roughgarden 1979; Nuismer et al.
2013; Althoff et al. 2014; Yamamura et al. 2001). By applying
our method to each pairwise interaction in a set of interacting
species, the distribution of pairwise coevolution can be
inferred within a community to provide empirical insight into
the degree to which coevolution moulds the previously men-
tioned properties of ecological communities. Third, theoretical
studies suggest that only very strong coevolution favours the
evolution of sexual reproduction (Otto & Nuismer 2004;
Lively 2010; Agrawal 2006). Our method could inform this
hypothesis by determining the strength of coevolution in
specific systems where the evolution of sex has been attributed
to interspecific interactions. Hence, when coupled with data
from a broad range of empirical systems, this method and its
future iterations hold the potential to settle long standing
debates involving the importance of species interactions and
coevolution in the evolution of various phenomena including
phenotypic diversity, sexual reproduction, community struc-
ture and epidemiological dynamics (Yoder & Nuismer 2010;
Hamilton 1980; McPeek 2017; Anderson & May, 1982).

ACKNOWLEDGEMENTS

The funding for this project was provided by NSF grant DEB
1450653 to SLN. We dedicate this manuscript to the memory
of Dr. Paul Joyce who inspired this project and initiated its
progress.

AUTHORSHIP

B.W. and S.L.N. conceived of the study and developed the
models. B.W. performed the analyses. B.W. and S.L.N. wrote
the paper.

DATA ACCESSIBILITY STATEMENT

Data available from the Hal Repository: https://hal.archives-
ouvertes.fr/hal-01984216.

REFERENCES

Agrawal, A.F. (2006). Similarity selection and the evolution of sex:

revisiting the red queen. PLoS Biol., 4, e265.

Althoff, D.M., Segraves, K.A. & Johnson, M.T. (2014). Testing for

coevolutionary diversification: linking pattern with process. Trends

Ecol. Evol., 29, 82–89.
Anderson, R.M. & May, R. (1982). Coevolution of hosts and parasites.

Parasitology, 85, 411–426.
Barraclough, D. & Slotow, R. (2010). The South African keystone

pollinator Moegistorhynchus longirostris (Wiedemann, 1819)(Diptera:

Nemestrinidae): notes on biology, biogeography and proboscis length

variation. African Invert., 51, 397–403.
Bequaert, J. (1935). Notes on the genus Moegistorhynchus and description

of a new African species of Nycterimyia (Diptera, Nemestrinidae).

Annls Transv. Mus., 15, 491–502.
Berenbaum, M., Zangerl, A. & Nitao, J. (1986). Constraints on chemical

coevolution: wild parsnips and the parsnip webworm. Evolution, 1215–
1228.

Blanquart, F. & Gandon, S. (2013). Time-shift experiments and patterns

of adaptation across time and space. Ecol. Lett., 16, 31–38.

Brodie III, E. & Ridenhour, B. (2003). Reciprocal selection at the

phenotypic interface of coevolution. Integr. Comp. Biol., 43, 408–418.
Burkhardt, A., Ridenhour, B., Delph, L. & Bernasconi, G. (2012). The

contribution of a pollinating seed predator to selection on Silene

latifolia females. J. Evol. Biol., 25, 461–472.
Gaba, S. & Ebert, D. (2009). Time-shift experiments as a tool to study

antagonistic coevolution. Trends Ecol. Evol., 24, 226–232.
Hamilton, W.D. (1980). Sex versus non-sex versus parasite. Oikos, 282–290.
Hanifin, C.T., BrodieJr, E.D. & Brodie III, E.D. (2008). Phenotypic

mismatches reveal escape from arms-race coevolution. PLoS Biol., 6, e60.

Iwao, K. & Rausher, M.D. (1997). Evolution of plant resistance to multiple

herbivores: quantifying diffuse coevolution. Am. Nat., 149, 316–335.
Janzen, D.H. (1980). When is it coevolution. Evolution, 34, 611–612.
Kingsolver, J.G., Hoekstra, H.E., Hoekstra, J.M., Berrigan, D.,

Vignieri, S.N., Hill, C., Hoang, A., Gibert, P. & Beerli, P. (2001).

The strength of phenotypic selection in natural populations. Am.

Nat., 157, 245–261.
Koskella, B. (2014). Bacteria-phage interactions across time and space:

merging local adaptation and time-shift experiments to understand

phage evolution. Am. Nat., 184, S9–S21.
Lively, C.M. (2010). A review of red queen models for the persistence of

obligate sexual reproduction. J. Heredity, 101, S13–S20.
Manning, J.C. & Goldblatt, P. (1997). Themoegistorhynchus longirostris

(Diptera: Nemestrinidae) pollination guild: long-tubed flowers and a

specialized long-proboscid fly pollination system in southern Africa.

Plant System. Evol., 206, 51–69.
McPeek, M.A. (2017). The ecological dynamics of natural selection:

traits and the coevolution of community structure. Am. Nat., 189,

E91–E117.
Nuismer, S. & Ridenhour, B. (2008). The contribution of parasitism to

selection on floral traits in Heuchera grossulariifolia. J. Evol. Biol., 21,

958–965.
Nuismer, S.L., Gomulkiewicz, R. & Ridenhour, B.J. (2010). When is

correlation coevolution? Am. Nat. 175, 525–537.
Nuismer, S.L., Jordano, P. & Bascompte, J. (2013). Coevolution and the

architecture of mutualistic networks. Evolution, 67, 338–354.
Otto, S.P. & Nuismer, S.L. (2004). Species interactions and the evolution

of sex. Science, 304, 1018–1020.
Pauw, A., Stofberg, J. & Waterman, R.J. (2009). Flies and flowers in

Darwin’s race. Evolution, 63, 268–279.
Ridenhour, B.J. (2005). Identification of selective sources: partitioning

selection based on interactions. Am. Nat., 166, 12–25.
Roughgarden, J. (1979). Theory of Population Genetics and Evolutionary

Ecology: An Introduction. MacMillan, London.

Siepielski, A.M., DiBattista, J.D. & Carlson, S.M. (2009). Its about time:

the temporal dynamics of phenotypic selection in the wild. Ecol. Lett.,

12, 1261–1276.
Siepielski, A.M., Gotanda, K.M., Morrissey, M.B., Diamond, S.E.,

DiBattista, J.D. & Carlson, S.M. (2013). The spatial patterns of

directional phenotypic selection. Ecol Lett., 16, 1382–1392.
Thompson, J.N. (1994). The Coevolutionary Process. University of

Chicago Press, Chicago, IL.

Thompson, J.N. (2005). The Geographic Mosaic of Coevolution. University

of Chicago Press, Chicago, IL.

Toju, H. (2008). Fine-scale local adaptation of weevil mouthpart length

and camellia pericarp thickness: altitudinal gradient of a putative arms

race. Evolution, 62, 1086–1102.
Toju, H. (2011). Weevils and camellias in a darwins race: model system

for the study of eco-evolutionary interactions between species. Ecol.

Res., 26, 239–251.
Toju, H., Abe, H., Ueno, S., Miyazawa, Y., Taniguchi, F., Sota, T. &

Yahara, T. (2011a). Climatic gradients of arms race coevolution. Am.

Nat., 177, 562–573.
Toju, H. & Sota, T. (2005). Imbalance of predator and prey armament:

geographic clines in phenotypic interface and natural selection. Am.

Nat., 167, 105–117.

© 2019 John Wiley & Sons Ltd/CNRS

8 B. Week and S. L. Nuismer Letter

https://hal.archives-ouvertes.fr/hal-01984216
https://hal.archives-ouvertes.fr/hal-01984216


Toju, H. & Sota, T. (2009). Do arms races punctuate evolutionary stasis?

unified insights from phylogeny, phylogeography and

microevolutionary processes. Mol. Ecol., 18, 3940–3954.
Toju, H., Ueno, S., Taniguchi, F. & Sota, T. (2011b). Metapopulation

structure of a seed–predator weevil and its host plant in arms race

coevolution. Evolution, 65, 1707–1722.
Wilks, S.S. (1938). The large-sample distribution of the

likelihood ratio for testing composite hypotheses. Ann. Math. Stat.,

9, 60–62.
Yamamura, N., Yachi, S. & Higashi, M. (2001). An ecosystem

organization model explaining diversity at an ecosystem level:

Coevolution of primary producer and decomposer. Ecol. Res., 16, 975–
982.

Yoder, J.B. & Nuismer, S.L. (2010). When does coevolution promote

diversification? Am. Nat. 176, 802–817.

SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Editor, Frederick Adler
Manuscript received 3 September 2018
First decision made 14 October 2018
Second decision made 27 December 2018
Manuscript accepted 11 January 2019

© 2019 John Wiley & Sons Ltd/CNRS

Letter The measurement of coevolution 9


