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Multicellular organisms host a rich assemblage of associated mi‐
croorganisms, collectively known as their “microbiomes”. Micro‐
biomes have the capacity to influence their hosts’ fitnesses, but
the conditions under which such influences contribute to evolu‐
tion are not clear. This is due in part to a lack of a comprehensive
theoretical framework for describing the combined effects of host
and associated microbes on phenotypic variation. Here we begin
to address this gap by extending the foundations of quantitative
genetic theory to include host‐associated microbes, as well as alle‐
les of hosts, as factors that explain quantitative host trait variation.
We introduce a way to partition host‐associated microbiomes into
componenents relevant for predicting a microbiome‐mediated re‐
sponse to selection. We then apply our general framework to a
simulation model of microbiome inheritance to illustrate principles
for predicting host trait dynamics, and to generalize classical nar‐
row and broad sense heritabilities to account for microbial effects.
We demonstrate that microbiome‐mediated responses to host se‐
lection can arise from various transmission modes, not solely verti‐
cal, with the contribution of non‐vertical modes depending on host
life history. Ourwork lays a foundation for integratingmicrobiome‐
mediated host variation and adaptation into our understanding of
natural variation.
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1 | INTRODUCTION

Nearly every lineage of multicellular organisms has a complex assemblage of associated microorganisms. This “micro‐
biome” can contribute important physiological and developmental functions to their hosts (Spor et al., 2011; Burns
et al., 2017; Goodrich et al., 2016; McFall‐Ngai, 2007). Although recent work has greatly expanded our understand‐
ing of the dynamics and function of host‐associated microbiomes (Bruijning et al., 2021; Theis, 2018; Rosenberg and
Zilber‐Rosenberg, 2018; Roughgarden, 2023; Sandoval‐Motta et al., 2017), it is still unclear the extent to which mi‐
crobiomes contribute to host fitness and evolution, and how such contributions depend on the mode of microbial
transmission (Wendling and Wegner, 2015; Zilber‐Rosenberg and Rosenberg, 2008; Russell, 2019). This knowledge
gap is due in part to the lack of a comprehensive theoretical framework for modeling how host‐microbiome system‐
level traits emerge from the interactions of host genes, microbiome and environment (Theis, 2018; Martiny et al.,
2015; van Vliet and Doebeli, 2019; Roughgarden et al., 2017; Zilber‐Rosenberg and Rosenberg, 2008).

Recently there have been calls to develop such a theoretical framework by incorporating microbiomes into
quantitative genetics (Mueller and Linksvayer, 2022; Awany and Chimusa, 2020; Benson et al., 2010; Wang et al.,
2018), which comprises a rich mathematical theory that models the inheritance and evolution of complex traits (Lynch
et al., 1998; Mackay et al., 2009; Rice, 2004; Walsh and Lynch, 2018). While microbiomes have sometimes been
considered to be traits influenced by host genetics (Camarinha‐Silva et al., 2017; Knights et al., 2014; Opstal and
Bordenstein, 2015), microbes have only recently been considered as inherited contributors themselves to the variation
of emergent host‐microbiome complex phenotypes (Org et al., 2015; Sandoval‐Motta et al., 2017). Microbiomes
are especially challenging to incorporate into quantitative genetics as sources of heritable trait variation because
microbiome inheritance is not Mendelian, and microbes need not be vertically transmitted (Bruijning et al., 2021;
Uller and Helanterä, 2013; Roughgarden, 2023; van Vliet and Doebeli, 2019). Theoretical investigations into how
different modes of microbial transmission influence the evolution of host and microbial joint phenotypes are needed
to clarify the degree to which these processes can affect long‐term evolutionary trajectories.

Here we formally generalize the foundations of quantitative genetic theory to include host‐associated microbes
as trait mediating factors in addition to host genes. We begin in section 2 by reviewing the general approach to
analysis of phenotypic variance introduced by Fisher (1918). Following this, we describe some initial assumptions
for incorporating microbiome mediated variation in section 3. In section 4 we introduce an approach to expand the
analysis of phenotypic variance to include microbial factors. Our approach is general and makes no assumptions
about correlations or interactions between host genes and microbes. To illustrate the generalized framework, we
then apply it to briefly analyze a model of gene‐microbe interactions in section 5. In section 6 we turn our attention
to microbiome mediated responses to host selection and suggest a relevant partitioning of microbiomes into three
components. We also describe useful simplifying assumptions for acquiring initial insights. To test predictions about
microbiome mediated responses to selection, we introduce a simple simulation model. Building on our results, we
propose definitions for narrow and broad sensemicrobial heritabilities, and notions of transmissibilities that generalize
genetic heritabilities to include any selective factors. We finish by connecting results from our simulation model to
consequences for genome‐wide and microbiome‐wide association studies.
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2 | QUANTITATIVE GENETIC FOUNDATIONAL PRINCIPLES

Quantitative genetics developed in the late 19th century through the development of statistical models to describe
how continuous phenotypic variation depended on heritable and environmental components and to predict the phe‐
notypic response to selection (Walsh and Lynch, 2018). Even after the rediscovery of Mendel’s laws in 1904, debate
continued as to how continuous variation could emerge from discrete genes (Provine, 2001). R.A. Fisher settled the
issue in a foundational 1918 paper (Fisher, 1918) showing that distributions of continuous phenotypes arise when
alleles at multiple loci, potentially interacting with each other and the environment, are considered. Following this,
Fisher then introduced the concepts of average excess and average effect of allele substitutions in order to associate an
additive quantity with each allele that best predicts the response to selection (Bürger, 2000; Fisher, 1941). Because
these concepts are at the core of theoretical quantitative genetics, and because we will be generalizing them later to
account for microbiome mediated effects, we summarize the basic principles here.

For a given host genotype 𝑔, write 𝑧𝑔 as the host trait associated with 𝑔 averaged over all other trait mediat‐
ing factors (including environmental factors and host microbiome composition). The quantity 𝑧𝑔 is referred to as a
genotypic value. Then, writing 𝑝𝑔 for the frequency at which host genotype 𝑔 occurs in the population, we have that
𝑧̄ = ∑𝑔 𝑝𝑔𝑧𝑔 is the average of 𝑧𝑔 over all host genotypes (equivalent to the population mean trait since all other factors
have already been averaged over), and the quantity 𝛿𝑔 = 𝑧𝑔 − 𝑧̄ is the average excess associated with host genotype 𝑔.
Fisher decomposed the average excess into an additive effect 𝛼𝑔 (defined to be the sum of additive effects associated
with each allele in host genotype 𝑔) and a residual deviation 𝜌𝑔 such that 𝛿𝑔 = 𝛼𝑔 + 𝜌𝑔 .

Using this partitioning scheme the total host phenotypic variation 𝑃 can be decomposed as 𝑃 = 𝐺 + 𝐸, where
𝐺 = ∑𝑔 𝑝𝑔(𝑧𝑔 − 𝑧̄)2 is the variance of genotypic values across the population (called the genetic variance). Although
𝐸 is often referred to as the environmental variance, it is more precisely defined as 𝐸 = 𝑃 − 𝐺, the remaining variance
left unexplained by genotypic values. Additionally, the additive genetic variance 𝐺𝐴 can be defined as the variance
of additive genetic effects across host genotypes, 𝐺𝐴 = ∑𝑔 𝑝𝑔(𝛼𝑔 − 𝛼̄)2, where 𝛼̄ = ∑𝑔 𝑝𝑔𝛼𝑔 . Then, to complete the
definition, additive genetic effects are defined to be the values that maximize 𝐺𝐴. Equivalently, the additive genetic
effects can be found by minimizing the residual genetic variance 𝐺𝑅 = ∑𝑔 𝑝𝑔(𝜌𝑔 − 𝜌̄)2, with 𝜌̄ = ∑𝑔 𝑝𝑔𝜌𝑔 .

The least‐squares problem described above has a unique solution (so long as no pair of loci are in perfect linkage
disequilibrium, but then one locus can be excluded because it perfectly predicts the other), and therefore provides a
formal definition for the additive genetic effects. Furthermore, under this definition the genetic variance decomposes
as 𝐺 = 𝐺𝐴 + 𝐺𝑅 (Bürger, 2000). Although Fisher’s (1918) paper assumed Hardy‐Weinberg equilibrium, which allowed
derivation of more specific results, the overall approach only depends on the identification of the genotypic values
𝑧𝑔 .

This definition of 𝐺𝐴 turns out to be useful for accurately predicting the response of a trait to selection. For
instance, 𝐺𝐴 is more useful than 𝐺 in predicting the response to selection because parents transmit alleles, not entire
genotypes. In particular, the classical breeders equation takes the form Δ𝑧̄ = 𝐺𝐴𝛽, where Δ𝑧̄ = 𝑧̄′ − 𝑧̄ is the difference
between offspring mean trait 𝑧̄′ and parent mean trait 𝑧̄, and 𝛽 = Cov(𝑊, 𝑧)/𝑃 is the correlation coefficient of fitness
(𝑊) with phenotype (Lande, 1976).

These definitions are also used to define heritability of a trait as a measure of parent‐offspring resemblance.
In particular, the quantities ℎ2 = 𝐺𝐴/𝑃 and 𝐻2 = 𝐺/𝑃 are referred to as the narrow and broad sense heritabilities,
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respectively (reviewed by Visscher et al., 2008). With this notation, we note that the breeders equation was initially
introduced by Lush (1937) in the form 𝑅 = ℎ2𝑆, where 𝑅 = Δ𝑧̄ is the response to selection and 𝑆 is the selection
differential (see Walsh and Lynch, 2018). Key notation used throughout our paper is summarized in Table 1.

In what follows we build on these foundations to incorporate the effects of host‐associated microbiomes. By
generalizing the above approach, we naturally arrive at a generalization of additive genetic variance, the breeders
equation, and narrow‐sense and broad‐sense heritabilities for microbiome mediated traits. Before we introduce our
framework, we discuss some initial assumptions for incorporating microbiomes in the following section.

3 | INITIAL ASSUMPTIONS FOR INCORPORATING MICROBES

By building on quantitative genetics theorywe are admittedly using a very host‐centric framework that leads to several
constraining assumptions. In particular, we focus on a single trait that is an emergent property of the host‐microbe
system, such as the ability of the host to acquire energy from food that first must be processed by components of the
host gut microbiome. For example, termites and their associated gut microbiomes together can process high amounts
of cellulose to acquire energy (Maurice and Erdei, 2018; Ali et al., 2019; Arora et al., 2022).

We also assume contributions from both host genes and microbe individuals to this trait comprise heritable or
potentially heritable units, meaning that they can be transmitted from a donor to a recipient, and influence the value of
the emergent phenotype. Traditional quantitative genetics defines the donor and recipients solely as parents and off‐
spring through the transmission of alleles. In sexually reproducing diploid populations, the process of gametogenesis
and syngamy leads to Mendelian segregation.

In contrast, microbes can be transmitted among hosts in a variety ofways. In particular, amicrobial parent (donor)
and microbial offspring (recipient) may not be genetically related. Additionally, unlike the transmission of alleles via
sexual reproduction, microbial recipients can have more than two donors, depending on the microbial taxa considered
and mode of transmission. In some cases the donor and receiver of transmitted host genetic and microbial units will
be the same, which has been described as lineal transmission (Roughgarden, 2023) and co‐propagation (Mueller and
Linksvayer, 2022).

We must also take into account that microbiome composition is governed by community assembly and not
Mendelian processes, andmicrobial abundances can vary dynamically throughout the life of the host. These have been
termed the fidelity of transmission and persistence fidelity of microbes (Mueller and Linksvayer, 2022), with the idea that
microbe persistence is often less than that of an allele. For the sake of clarity, we do not considermicrobiome dynamics
throughout host development in our discussion, and instead focus on the transmission of microbes between donor
and recipient. However, our approach is sufficiently general to accomodate such additional complexities. In particular,
within host microbiome dynamics will likely alter measurements of microbiome mediated host trait heritability.

Several authors have recently attempted to extend heritability to include microbial contributions, and have pro‐
posed novel terminology such as microbiability and holobiontability. However, we prefer to follow the convention
established earlier by Rothschild et al. (2018) and further clarified in Mueller and Linksvayer (2022) of using 𝐻2 and
ℎ2 for broad and narrow sense genetic heritability, and 𝐵2 and 𝑏2 for broad and narrow sense microbial “heritability”.
As Mueller and Linksvayer (2022) make clear, microbial heritability refers to microbial contributions to the emergent
host phenotype, not to be confused with the genetic heritability of microbiomes as host traits in and of themselves
(Morris and Bohannan, 2024).
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The use of the term heritability when referring to microbial contributions to a trait is a notable expansion of
its original definition in the context of host genetics that has been questioned by previous authors. However, we
feel in the context of phenotypic variance partitioning it is appropriate if clearly identified as genetic vs. microbial
heritabilities, and explicitly defined as we attempt below. After all, the term “inheritance” refers to much more than
genes (Zimmer, 2019).

4 | ANALYSIS OF VARIANCE OF MICROBIOME MEDIATED TRAITS

The partitioning of variance reviewed in section 2 is not restricted to genetic material, but can be applied to any
collection of trait mediating factors. In particular, for a microbiome mediated host trait, relevant factors include the
host genotype 𝑔 and host microbiome 𝑚. For clarity, we consider diploid host populations with 𝐿 biallelic loci. We
denote by 𝑔𝑖 ∈ {0, 1, 2} the number of alleles at locus 𝑖 ∈ {1, … , 𝐿} (the choice of allele counted is arbitrary). Turning
to the host microbiome, we assume microbiomes may be summarized by the abundances of 𝑆 microbial taxa with𝑚𝑗
being the abundance ofmicrobe taxon 𝑗 ∈ {1, … , 𝑆}. Vectors of allele counts andmicrobial abundances are respectively
written as 𝑔 = (𝑔1, … , 𝑔𝐿)∗ and 𝑚 = (𝑚1, … ,𝑚𝑆)∗, where ∗ denotes matrix transposition.

Wewrite 𝑧𝑔𝑚 as the expected trait value for hosts carrying the genotype‐microbiome pair (𝑔,𝑚) averaged across
all other traitmediating factors, and refer to 𝑧𝑔𝑚 as the genotypic‐microbic valueof (𝑔,𝑚). Additionally, wewrite 𝑧̄ as the
mean genotypic‐microbic value across all hosts in the population so that 𝑧̄ = ∑𝑔𝑚 𝑝𝑔𝑚𝑧𝑔𝑚 , where 𝑝𝑔𝑚 is the frequency
of hosts carrying the genotype‐microbiome pair (𝑔,𝑚) and the sum is taken over all possible combinations of (𝑔,𝑚).
By definition, 𝑧̄ is also the mean trait of the host population.

The average excess of the pair (𝑔,𝑚) is then 𝛿𝑔𝑚 = 𝑧𝑔𝑚 − 𝑧̄, and we consider the decomposition 𝛿𝑔𝑚 = 𝛼𝑔𝑚 + 𝜌𝑔𝑚 ,
where 𝛼𝑔𝑚 is an additive component that decomposes into additive genetic and additive microbial effects of the
pair (𝑔,𝑚) on 𝛿𝑔𝑚 , and 𝜌𝑔𝑚 is the residual deviation. In particular, following Fisher’s general approach, we assume
𝛼𝑔𝑚 = 𝛼0 + 𝛾𝑔 + 𝜔𝑚 where 𝛼0 acts as an intercept for the statistical model, 𝛾𝑔 is the additive genetic effect and 𝜔𝑚 is
the additive microbial effect on the average excess 𝛿𝑔𝑚 .

Finally, using our assumptions for summarizing host genotype and host microbiome, the definition of additive
effects imply that they can be written as

𝛾𝑔 =
𝐿
∑
𝑖=1
𝛾𝑖𝑔𝑖 , 𝜔𝑚 =

𝑆
∑
𝑗=1
𝜔𝑗𝑚𝑗 , (1)

where 𝛾𝑖 is the per count additive allelic effect of locus 𝑖 ∈ {1, … , 𝐿} on 𝛿𝑔𝑚 and 𝜔𝑗 is the per capita additive microbial
effect of taxon 𝑗 ∈ {1, … , 𝑆} on 𝛿𝑔𝑚 . To be clear, 𝛾𝑔 is distinguished from 𝛾𝑖 because 𝑔 is a vector and 𝑖 is an integer. A
similar distinction holds for 𝜔𝑚 and 𝜔𝑖 .

Following the general scheme outlined in section 2, we can write the additive component of host trait variation
explained by host genetic and host microbiome factors as

𝑃𝐴 = ∑
𝑔𝑚
𝑝𝑔𝑚(𝛼𝑔𝑚 − 𝛼̄)2, where 𝛼̄ = ∑

𝑔𝑚
𝑝𝑔𝑚𝛼𝑔𝑚 . (2)
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The expression for 𝑃𝐴 reduces to the additive genetic variance 𝐺𝐴 if the host microbiome is considered as an environ‐
mental factor to be averaged out. Setting 𝛾̄ = ∑𝑔𝑚 𝑝𝑔𝑚𝛾𝑔 and 𝜔̄ = ∑𝑔𝑚 𝑝𝑔𝑚𝜔𝑚 , we have

(𝛼𝑔𝑚 − 𝛼̄)2 = (𝛾𝑔 − 𝛾̄)2 + (𝜔𝑚 − 𝜔̄)2 + 2(𝛾𝑔 − 𝛾̄)(𝜔𝑚 − 𝜔̄) (3)

so the combined additive genotypic‐microbic variation 𝑃𝐴 includes non‐random associations between host genes and
microbes thanks to the term 2(𝛾𝑔 − 𝛾̄)(𝜔𝑚 − 𝜔̄). This is a generalization of the result that the definition of additive
genetic variance is independent of Hardy‐Weinberg equilibrium, but also includes non‐random associations between
host genetic loci. Then, building on the classical definition of additive genetic variance, we write

𝐺𝐴 = ∑
𝑔𝑚
𝑝𝑔𝑚(𝛾𝑔 − 𝛾̄)2, 𝑀𝐴 = ∑

𝑔𝑚
𝑝𝑔𝑚(𝜔𝑚 − 𝜔̄)2, 𝐶𝐴 = 2∑

𝑔𝑚
𝑝𝑔𝑚(𝛾𝑔 − 𝛾̄)(𝜔𝑚 − 𝜔̄), (4)

where 𝐺𝐴 is the additive genetic variance as before, 𝑀𝐴 is the additive microbial variance, and 𝐶𝐴 is the additive gene‐
microbe covariance. With this notation in place, we have 𝑃𝐴 = 𝐺𝐴 + 𝑀𝐴 + 𝐶𝐴.

The definitions of additive genetic and additive microbial effects are formalized by solving the least squares
problem of minimizing

𝑃𝑅 = ∑
𝑔𝑚
𝑝𝑔𝑚(𝜌𝑔𝑚 − 𝜌̄)2 (5)

with respect to 𝛼0, 𝛾1, … , 𝛾𝐿, 𝜔1, … ,𝜔𝑆 , where 𝜌𝑔𝑚 = 𝛿𝑔𝑚 − 𝛼𝑔𝑚 . In supplement section 1 we show that 𝛼0 = −𝛾̄ − 𝜔̄.
This implies that 𝛼̄ = 0 and, because 𝛿̄ = 0, also that 𝜌̄ = 0. Additionally, setting Cov(𝑧𝑔𝑚 , 𝑔) the vector with 𝑖th entry
Cov(𝑧𝑔𝑚 , 𝑔𝑖), Cov(𝑧𝑔𝑚 , 𝑚) the vector with 𝑗th entry Cov(𝑧𝑔𝑚 , 𝑚𝑗), Γ the matrix with 𝑖𝑗th entry Cov(𝑔𝑖 , 𝑔𝑗), Ω the matrix
with 𝑖𝑗th entry Cov(𝑚𝑖 , 𝑚𝑗), and Ξ the matrix with 𝑖𝑗th entry Cov(𝑔𝑖 , 𝑚𝑗), the least‐squares problem reduces to solving
the linear system

Cov(𝑧𝑔𝑚 , 𝑔) = Γ
⇀𝛾 + Ξ ⇀𝜔, Cov(𝑧𝑔𝑚 , 𝑚) = Ξ∗

⇀𝛾 + Ω ⇀𝜔 (6)

for
⇀𝛾= (𝛾1, … , 𝛾𝐿)∗ and

⇀𝜔= (𝜔1, … ,𝜔𝑆)∗, where ∗ denotes matrix transposition. The solution is then given by

⇀𝛼= Σ−1 Cov(𝑧𝑔𝑚 , 𝑎) (7)

with ⇀𝛼= (𝛾1, … , 𝛾𝐿, 𝜔1, … ,𝜔𝑆)∗, 𝑎 = (𝑔1, … , 𝑔𝐿, 𝑚1, … ,𝑚𝑆)∗, Cov(𝑧𝑔𝑚 , 𝑎) the vector with 𝑖th entry Cov(𝑧𝑔𝑚 , 𝑎𝑖), and Σ
the block matrix

Σ = [ Γ Ξ
Ξ∗ Ω

] . (8)

Similar to the case for additive genetic effects reviewed in section 2, this solution is unique so long as Σ is non‐
singular. This means that if the allele counts at any pair of loci, or if the abundances of any pair of microbes, or if an
abundance of a microbe and an allele count of a locus perfectly correlate, the solution is no longer unique. Of course,
in this case, factors can be pruned until none are perfectly correlated to setup a least‐squares problem that has a
unique solution.
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TABLE 1 Summary of key notation

Symbol Meaning Symbol Meaning

𝑔 Host genotype Δ𝑧̄ Response to selection in host mean trait

𝑚 Host microbiome 𝛽 Selection gradient

𝑧𝑔𝑚 Genotypic‐microbic value of (𝑔,𝑚) ℎ2 Narrow‐sense genetic heritability

𝛿𝑔𝑚 Average excess of 𝑧𝑔𝑚 𝑏2 Narrow‐sense microbial heritability

𝛾𝑔 Additive effect of 𝑔 on 𝛿𝑔𝑚 𝑡2 Narrow‐sense transmissibility

𝛾𝑖 Additive effect of locus 𝑖 on 𝛿𝑔𝑚 𝐻2 Broad‐sense genetic heritability

𝜔𝑚 Additive effect of𝑚 on 𝛿𝑔𝑚 𝐵2 Broad‐sense microbial heritability

𝜔𝑗 Additive effect of taxa 𝑗 on 𝛿𝑔𝑚 𝑇2 Broad‐sense transmissibility

𝐺𝐴 Additive genetic variance 𝑀𝐿 Lineal microbial variance

𝑀𝐴 Additive microbial variance 𝑀𝑁 Non‐lineal microbial variance

𝐶𝐴 Additive gene‐microbe covariance 𝑀𝐸 External microbial variance

𝑀𝜓
𝐴 Selective microbial variance 𝐶𝜓𝐴 Selective gene‐microbe covariance

Applying equation (1), the general expressions 𝛾̄ = ∑𝑔𝑚 𝑝𝑔𝑚𝛾𝑔 and 𝜔̄ = ∑𝑔𝑚 𝑝𝑔𝑚𝜔𝑚 simplify to 𝛾̄ = ∑𝑖 𝛾𝑖𝑔̄𝑖 and
𝜔̄ = ∑𝑖 𝜔𝑖𝑚̄𝑖 respectively, where 𝑔̄𝑖 is the average number of alleles at locus 𝑖 (which is twice the allele frequency due
to host genotypes being diploid) and 𝑚̄𝑖 is the average abundance ofmicrobe taxon 𝑖. Using these locus/taxon‐specific
expressions of additive effects, and taking advantage of variances of sums being sums of (co)variances, expressions
for the additive components of variance generalize classical calculations for additive genetic variance (e.g., equation
(4) of Bulmer, 1971):

𝐺𝐴 =
𝐿
∑
𝑖=1
𝛾2𝑖 Var(𝑔𝑖) + 2

𝐿
∑
𝑖=1

𝑖−1
∑
𝑗=1
𝛾𝑖𝛾𝑗 Cov(𝑔𝑖 , 𝑔𝑗), (9a)

𝑀𝐴 =
𝑆
∑
𝑖=1
𝜔2
𝑖 Var(𝑚𝑖) + 2

𝑆
∑
𝑖=1

𝑖−1
∑
𝑗=1
𝜔𝑖𝜔𝑗 Cov(𝑚𝑖 , 𝑚𝑗), (9b)

𝐶𝐴 = 2
𝐿
∑
𝑖=1

𝑆
∑
𝑗=1
𝛾𝑖𝜔𝑗 Cov(𝑔𝑖 , 𝑚𝑗), (9c)

where we use the convention ∑0𝑗=1 𝑥𝑗 = 0 for any summands 𝑥1, 𝑥2, … .

This overall approach can be used to estimate the additive genetic and additive microbial effects 𝛾1, … , 𝛾𝐿 and
𝜔1, … ,𝜔𝑆 whenever the genotypic‐microbic values 𝑧𝑔𝑚 are known for each host genotype‐microbiome pair (𝑔,𝑚)
present in the population. In particular, this holds for genotypic‐microbic values occurring as arbitrary functions
of genotype‐microbiome pairs; 𝑧𝑔𝑚 = 𝑓(𝑔,𝑚) for any function 𝑓 . That is, this approach accounts for any kind of
interaction among genes, among microbes, and between genes and microbes on the expression of host traits. To
illustrate, we apply this approach to a model of genotypic‐microbic values that includes interactions between genes
and microbes in the following section.
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5 | A MODEL OF GENE‐MICROBE INTERACTIONS

The approach to analysis of variance above establishes a statistical model. We can then apply this model either to
empirical or simulated data to gain biological insights. As a demonstration, we examine what the statistical model
tells us when applied to a mechanistic model involving pairwise interactions between host loci and microbial taxa.
Considering 𝑧𝑔𝑚 = 𝑓(𝑔,𝑚) as a function of the genotype‐microbiome pair (𝑔,𝑚), we analyze the model

𝑧𝑔𝑚 = 𝑧̊0 +
𝐿
∑
𝑖=1
𝛾̊𝑖𝑔𝑖 +

𝑆
∑
𝑗=1
𝜔̊𝑗𝑚𝑗 +

𝐿
∑
𝑖=1

𝑆
∑
𝑗=1
𝜒̊𝑖𝑗𝑔𝑖𝑚𝑗 (10)

where 𝑧̊0, 𝛾̊𝑖 , 𝜔̊𝑗 , 𝜒̊𝑖𝑗 are model parameters, and 𝛾̊𝑖 , 𝜔̊𝑗 are not necessarily equivalent to the additive effects 𝛾𝑖 , 𝜔𝑗 as we
now show.

Using the approach outlined in the previous section, the additive genetic and microbial effects from model (10)
depends on Cov(𝑧𝑔𝑚 , 𝑔𝑘) and Cov(𝑧𝑔𝑚 , 𝑚𝑘), which are given by

Cov(𝑧𝑔𝑚 , 𝑔𝑘) =
𝐿
∑
𝑖=1
𝛾̊𝑖 Cov(𝑔𝑖 , 𝑔𝑘) +

𝑆
∑
𝑗=1
𝜔̊𝑗 Cov(𝑚𝑗 , 𝑔𝑘) +

𝐿
∑
𝑖=1

𝑆
∑
𝑗=1
𝜒̊𝑖𝑗 Cov(𝑔𝑖𝑚𝑗 , 𝑔𝑘), (11a)

Cov(𝑧𝑔𝑚 , 𝑚𝑘) =
𝐿
∑
𝑖=1
𝛾̊𝑖 Cov(𝑔𝑖 , 𝑚𝑘) +

𝑆
∑
𝑗=1
𝜔̊𝑗 Cov(𝑚𝑗 , 𝑚𝑘) +

𝐿
∑
𝑖=1

𝑆
∑
𝑗=1
𝜒̊𝑖𝑗 Cov(𝑔𝑖𝑚𝑗 , 𝑚𝑘). (11b)

Writing

𝑣𝑘 =
𝐿
∑
𝑖=1

𝑆
∑
𝑗=1
𝜒̊𝑖𝑗 Cov(𝑔𝑖𝑚𝑗 , 𝑔𝑘), 𝑘 = 1, … , 𝐿, (12a)

𝑣𝑘 =
𝐿
∑
𝑖=1

𝑆
∑
𝑗=1
𝜒̊𝑖𝑗 Cov(𝑔𝑖𝑚𝑗 , 𝑚𝑘−𝐿), 𝑘 = 𝐿 + 1,… , 𝐿 + 𝑆, (12b)

the additive genetic and microbial effects are given by ⇀𝛼= ⇀̊𝛼 + Σ−1𝑣, where ⇀𝛼= (𝛾1, … , 𝛾𝐿, 𝜔1, … ,𝜔𝑆) are the additive
genetic and microbial effects, Σ is defined at the end of the previous section, and ⇀̊𝛼 = (𝛾̊1, … , 𝛾̊𝐿, 𝜔̊1, … , 𝜔̊𝑆) are model
parameters.

In the absence of gene‐microbe interactions, so that 𝜒̊𝑖𝑗 = 0 for all 𝑖 = 1, … , 𝐿 and 𝑗 = 1, … , 𝑆, we have 𝑣 = 0 and
the additive effects formally defined above become equivalent to the additive effects of the model; 𝛾𝑖 = 𝛾̊𝑖 , 𝜔𝑗 = 𝜔̊𝑗 .
However, if 𝜒̊𝑖𝑗 ≠ 0 for any host locus 𝑖 and any microbial taxon 𝑗, the formal additive effects and model additive effects
are in general no longer equivalent (𝛾𝑖 ≠ 𝛾̊𝑖 , 𝜔𝑗 ≠ 𝜔̊𝑗) because the formal additive effects will also include terms due to
gene‐microbe interactions.

To unpack this more, consider the example where the effect of a microbe only occurs in the presence of an
allele at a haploid biallelic locus such that neither the allele nor the microbe have an effect on the host trait in the
absence of the other. In this case, the above model simplifies to 𝑧𝑔𝑚 = 𝑧̊0 + 𝜒̊𝑔𝑚, where 𝑔 = 0, 1 determines the
presence of the allele,𝑚 = 0, 1 determines the presence of the microbe, and 𝜒̊ quantifies the effect of their interaction.
Writing 𝑝𝑔𝑚 as the frequency of hosts carrying the pair (𝑔 = 1,𝑚 = 1), 𝑝𝑔 the frequency of hosts with the allele (so
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the marginal frequency of 𝑔 = 1), and 𝑝𝑚 the frequency of hosts with the microbe (so the marginal frequency of
𝑚 = 1), then the additive effect of the allele is 𝛾 ∝ (𝑝𝑚 − 𝑝𝑔𝑚)(1 − 𝑝𝑚), and the additive effect of the microbe is
𝜔 ∝ (𝑝𝑔 − 𝑝𝑔𝑚)(1 − 𝑝𝑔), where ∝ means proportional to and the constant of proportionality for both quantities is
𝜒̊𝑝𝑔𝑚/(𝑝𝑔𝑝𝑚(1 − 𝑝𝑔)(1 − 𝑝𝑚) − (𝑝𝑔𝑚 − 𝑝𝑔𝑝𝑚)2). Hence, even in the absence of any underlying additive effects in the
mechanistic model, the formally defined additive effects of the statistical model are non‐zero. Additionally, each of
these effects depends on the frequency of the other factor.

Similar results hold formodels that include interactions among host genes and interactions amongmicrobial taxa.
In supplement section 2 we provide expressions for additive genetic and additive microbial effects given a model that
includes all possible pairwise interactions between genes and microbes explained by products of allele counts and
microbial abundances.

6 | MICROBIOME MEDIATED RESPONSE TO HOST SELECTION

Because the transmission of microbes is not necessarily lineal (as in direct from parent to offspring, sensu Roughgar‐
den, 2023) nor does it occur with high fidelity relative to genetic transmission (e.g., microbiome composition exhibits
significant variation between related individuals, see Tierney et al., 2019; Tavalire et al., 2021), we cannot transfer
many of the important simplifying assumptions of classical quantitative genetics regarding inheritance to the study of
microbiome mediated traits. These simplifying assumptions have also been central to the power of the classical quan‐
titative genetic approach, such as the use of predigree analysis in the animal model (Wilson et al., 2009). Additionally,
the degree to which additive host trait variation explained by microbes mediates an intergenerational response to
selection on host individuals is not obvious. In the following subsections we propose a simple classification scheme
to account for different sources of microbe acquisition, apply a set of simplifying assumptions to clarify our initial
analysis, and consider consequences for a microbially mediated heritable response to selection on host individuals.
This analysis motivates definitions of microbial heritabilities and host trait transmissibilities that we introduce below
in section 7.

6.1 | Sources of microbial acquisition

As a first step in overcoming the challenge described above, we propose classifying microbes according to different
sources of microbial acquisition. Here, we consider three patterns of microbial acquisition:

1. Externally acquired: Host‐associated microbes are considered externally acquired if their ancestors (in the sense
of cellular binary fission) never inhabited the microbiomes of any past or present host individuals other than the
current host individual they associate with. Then, by definition, externally acquired microbes are not transmit‐
ted across host generations and no feedbacks can occur between host microbiomes and sources of external
acquisition.

2. Lineally acquired: Host‐associated microbes are considered lineally acquired if they have ancestors (again in the
sense of cellular binary fission) in the microbiomes of that host’s genetic parents.

3. Non‐lineally acquired: Host‐associated microbes are considered non‐lineally acquired if they are neither lineally
acquired nor externally acquired. For example, a microbe acquired from a social interaction with another host is
considered non‐lineally acquired so long as none of its ancestors occur in the focal hosts parental microbiomes.
Importantly, this definition implies non‐lineal sources may include related and unrelated host individuals, but
non‐lineal acquisition from related individuals may lead to similar patterns as lineal acquisition.
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F IGURE 1 An illustration of our definitions of sources of acquisition. Small mustard colored circles (of various
shades) represent microbe individuals. The brightest shade corresponds to lineal microbes. The darkest shade corre‐
sponds to external microbes. The medium‐dark shade corresponds to non‐lineal microbes. Larger green circles at the
top of the figure represent host individuals. The brown square represents the environmental reservoir of microbes.
The blue circle at the bottom represents a host offspring individual.

These definitions, formulated at the scale of microbial individuals, are illustrated in Figure 1. To make use of
these definitions for understanding howmicrobiomes can mediate a response to selection, we evaluate the degree to
which each source contributes ancestry across an entire microbial taxa within a host individual, and then average this
across host individuals to arrive at a summary of acquisition for eachmicrobial taxa. Considering sources of acquisition
at the resolution of microbial taxa is particularly useful in our framework because our framework quantifies microbial
effects on host traits at the same scale of biological organization.

6.2 | A model of microbial acquisition

Althoughmanymicrobial taxa likely exhibit several sources of acquisition, for this initial inquirywe consider a simplified
scenario where each taxon only has one source of acquisition. This allows us to explore the consequences of each
of these sources on the response to selection. More realistic models that account for the complexity of microbial
transmission should be studied in future work. In particular, assuming the 𝑆 microbial taxa in the host microbiome
can be subdivided into 𝑆𝐿 lineally acquired taxa, 𝑆𝑁 non‐lineally acquired taxa, and 𝑆𝐸 externally acquired taxa (so that
𝑆 = 𝑆𝐿 + 𝑆𝑁 + 𝑆𝐸 ), we can rewrite the additive microbial effect on the average excess 𝛿𝑔𝑚 = 𝑧𝑔𝑚 − 𝑧̄ as 𝜔𝑚 = 𝜆𝑚 + 𝜈𝑚 + 𝜀𝑚
where

𝜆𝑚 =
𝑆𝐿
∑
𝑖=1
𝜆𝑖𝑚𝐿,𝑖 , 𝜈𝑚 =

𝑆𝑁
∑
𝑖=1
𝜈𝑖𝑚𝑁,𝑖 , 𝜀𝑚 =

𝑆𝐸
∑
𝑖=1
𝜀𝑖𝑚𝐸,𝑖 , (13)
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where the additional subscripts indicate the source each group of taxa is acquired from (𝐿ineal, 𝑁on‐lineal, 𝐸xternal).
We additionally set 𝜆̄ = ∑𝑔𝑚 𝑝𝑔𝑚𝜆𝑚 , 𝜈̄ = ∑𝑔𝑚 𝑝𝑔𝑚𝜈𝑚 , 𝜀̄ = ∑𝑔𝑚 𝑝𝑔𝑚𝜀𝑚 . Taking this partitioning a step further, we can
write the additive microbial variance as

𝑀𝐴 = 𝑀𝐿 + 𝑀𝑁 + 𝑀𝐸 + 𝐶𝐿𝑁 + 𝐶𝐿𝐸 + 𝐶𝑁𝐸 , (14)

where 𝑀𝐿 = ∑𝑔𝑚 𝑝𝑔𝑚(𝜆𝑚 − 𝜆̄)2 is the component of additive variance due to lineally acquired microbes (which we refer
to as the additive lineal variance), 𝑀𝑁 = ∑𝑔𝑚 𝑝𝑔𝑚(𝜈𝑚 − 𝜈̄)2 is the component due to non‐lineally acquired microbes
(the additive non‐lineal variance), 𝑀𝐸 = ∑𝑔𝑚 𝑝𝑔𝑚(𝜀𝑚 − 𝜀̄)2 is due to externally acquired microbes (the additive external
variance), 𝐶𝐿𝑁 = 2∑𝑔𝑚 𝑝𝑔𝑚(𝜆𝑚 − 𝜆̄)(𝜈𝑚 − 𝜈̄) is due to non‐random associations between the abundances of lineally
and non‐lineally acquired microbes (the additive lineal‐non‐lineal covariance), 𝐶𝐿𝐸 = 2∑𝑔𝑚 𝑝𝑔𝑚(𝜆𝑚 − 𝜆̄)(𝜀𝑚 − 𝜀̄) is due
to non‐random associations between the abundances of lineally and externally acquired microbes (the additive lineal‐
external covariance), and 𝐶𝑁𝐸 = 2∑𝑔𝑚 𝑝𝑔𝑚(𝜈𝑚 − 𝜈̄)(𝜀𝑚 − 𝜀̄) is due to non‐random associations between the abundances
of non‐lineally and externally acquired microbes (the additive non‐lineal‐external covariance). For later use, we also
introduce the additive gene‐lineal covariance 𝐶𝐿 = 2∑𝑔𝑚 𝑝𝑔𝑚(𝛾𝑔−𝛾̄)(𝜆𝑚−𝜆̄) as the component of additive gene‐microbe
covariance due to lineally acquired microbes, the additive gene‐non‐lineal covariance 𝐶𝑁 = 2∑𝑔𝑚 𝑝𝑔𝑚(𝛾𝑔 − 𝛾̄)(𝜈𝑚 − 𝜈̄) as
the component due to non‐lineally acquired microbes, and the additive gene‐external covariance 𝐶𝐸 = 2∑𝑔𝑚 𝑝𝑔𝑚(𝛾𝑔 −
𝛾̄)(𝜀𝑚 − 𝜀̄) as the component due to external microbes.

For the remainder of this paper, we employ the assumption that each taxon has a single source of acquisition,
along with the components of variance defined above.

6.3 | Interactions between host selection and microbial acquisition

By definition, externally acquired microbes cannot contribute to a microbiome mediated response of the host trait
to selection on hosts. In contrast, lineally acquired microbes will likely make the most reliable contributions to a
microbiome mediated response to host selection. The degree to which non‐lineally acquired microbes contribute to a
microbiome mediated response depends on the degree to which host selection shapes the set of possible non‐lineal
sources. For instance, if non‐lineally acquired microbes are sourced from all host individuals in the parental generation
with equal probability independent of the action of host selection (so selection does not shape the set of non‐lineal
sources), then non‐lineally acquired microbes will not contribute to a microbiome mediated response. On the other
hand, if non‐lineal sources include only the microbiomes of host parents that, for example, survived an episode of
viability‐based selection, then non‐lineally acquired microbes may contribute significantly to a microbiome mediated
response.

Based on the above reasoning, to obtain an accurate model for predicting a microbiome mediated response
to selection, externally acquired microbes must first be identified and culled from the set of factors considered, and
their abundances should be averaged over when calculating 𝑧𝑔𝑚 . Additionally, it must be determined whether or
not non‐lineally acquired microbes are sourced from selected parents or from the broader population of unselected
parents, because this is likely associated with whether or not they contribute to a response to selection. Having
identified the microbial taxa that contribute to a response to selection, we write 𝑀𝜓

𝐴 (𝐶𝜓𝐴 ) for the additive microbial
variance (gene‐microbe covariance) calculated using only the abudances of those taxa, and refer to this quantity as
the selective additive microbial variance (gene‐microbe covariance). Building on this logic, we anticipate three basic
conclusions.
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F IGURE 2 Graphical representation for the two models of microbiome inheritance used in our simulations. In
the left panel, non‐lineal microbes for a given offspring are acquired from a randomly chosen individual in the pre‐
selected parental population. In the right panel, non‐lineal microbes are acquired from a randomly chosen individual
in the post‐selected population. Circles represent hosts and pairs of brackets represent the lineal, non‐lineal, and
external microbiome components. The green circles at the top of each panel represent the parental population be‐
fore an episode of viability selection, and the mustard circles represent the parental population after an episode of
viability selection (with vertical straight arrows indicating the trajectories of host individuals). The vertical rectangle
on the right represents an environmetal reservoir that external microbes are sampled from. Hosts highlighted with
dashed concentric circles are the parents of the focal offspring. The plus symbol joining the lineal components of the
parental microbiomes indicates taking an average. Arrows pointing towards offspring brackets represent microbiome
transmission.

First, if we summarize the abundances of lineal microbes using presence/absence, and assume host offspring
inherit these binary values for each taxon independently, then the inheritance of these microbes is structurally equiv‐
alent to the inheritance of genetic alleles at freely recombining loci. Hence, in this case, it is clear that lineal microbes
contribute to a response to selection. We therefore anticipate a similar result to hold when presence/absence is
replaced with higher resolution summaries of microbial abundances such as approximated relative abundances. In
particular, we expect the selective additive microbial variance 𝑀𝜓

𝐴 to always include the additive lineal variance 𝑀𝐿,
and the selective additive gene‐microbe covariance 𝐶𝜓𝐴 to always include the additive gene‐lineal covariance 𝐶𝐿 (de‐
fined towards the end of section 6.2).

Second, if non‐lineally acquired microbes are sourced from the broader population of unselected parents, then
we anticipate non‐lineal microbes to not contribute to a response to selection. In this case the selective additive
microbial variance would still simplify to the additive lineal variance,𝑀𝜓

𝐴 = 𝑀𝐿, and the selective additive gene‐microbe
covariance would also still simplify as 𝐶𝜓𝐴 = 𝐶𝐿.

However, as a third conclusion, if non‐lineally acquired microbes are sourced from selected parents, we antic‐
ipate that their abundances will also contribute to a response to selection. In this case, selective additive microbial
variation would become 𝑀𝜓

𝐴 = 𝑀𝐿 + 𝑀𝑁 + 𝐶𝐿𝑁 and selective additive gene‐microbe covariance becomes 𝐶
𝜓
𝐴 = 𝐶𝐿 + 𝐶𝑁 .

To test our expectations described above, we implemented a simulation model based on the general setup described
at the beginning of section 4, which we now describe.

Simulation Description: Our simulation model assumes that host traits follow an additive model equivalent to that
analyzed in section 5, except without any gene‐microbe interactions (so 𝜒̊𝑖𝑗 = 0 for each 𝑖, 𝑗). As a function of pheno‐
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F IGURE 3 Time series plots of average simulated host trait dynamics. Different colors correspond to different
combinations of factors. Pink corresponds to only host genes mediating a response to selection (G). Green corre‐
sponds to only host genes and lineal microbes (GL). Blue corresponds to host genes, lineal and non‐lineal microbes
(GLN). Mustard corresponds to host genes, lineal, non‐lineal, and external microbes (GLNE). For each combination of
factors, simulations were repeated 20 times. Solid lines are averages across these repeated runs, and shaded regions
correspond to standard deviations across repeated runs. The panels are divided by non‐lineal microbes acquired from
post‐selected parents (left) and pre‐selected parents (right).

type, host fitness is set to 𝑊(𝑧) = exp(𝑠𝑧), which leads to directional selection for larger host traits when 𝑠 > 0 (we
set 𝑠 = 1𝑒 − 3). We assume 100 freely recombining host genetic loci. The abundances of lineally acquired microbes in
host offspring are Poisson distributed around the mid‐parents of those taxa. For non‐lineally acquired microbes we
consider two models: 1) each host offspring chooses a single host individual uniformly from the broader unselected
parental population as its non‐lineal source and 2) each host offspring chooses a single host individual from the se‐
lected parental population with probability proportional to its fitness. Once the non‐lineal donor is chosen, the host
offspring inherits non‐lineal abundances that are Poisson distributed around the abundances of non‐lineal taxa in the
donor. Finally, external microbe abundances are drawn independently and identically from a Poisson distribution for
each taxa in each host in each host generation. We assume 100 microbial taxa in each microbiome component, with
each taxa having an average abundance of 50 in each host parent. This model of microbial inheritance is illustrated
in Figure 2.

Results are obtained by first drawing normally distributed additive effects, and then observed and predicted
responses to selection are averaged over randomly drawn genotype‐microbiome pairs for host parents, repeated
selection experiments, and repeated formation of offspring from selected parents. Figure 3 illustrates mean trait
dynamics under our model when different combinations of factors mediate traits, and when non‐lineal microbes are
sourced from pre‐selected or post‐selected parents. In addition, time‐series of correlations between host allele counts
andmicrobe abundances are shown in Figure 4. Parameter values used for simulating data presented in Figures 3 and 4
are provided Table 1 of the supplement. Parameter values used for simulating data presented in Figure 5 are provided
in Table 2 of the supplement. Code to reproduce these results (written in Julia) is provided at the GitHub repository
https://github.com/bobweek/qgmmt.
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F IGURE 4 Time series plots of absolute values of correlations between host allele counts andmicrobe abundances.
Correlations between allele counts and abundances of lineal microbes (left plots) increase faster when non‐lineal
microbes are sourced from the pre‐selected host parental population in comparison to when non‐lineal microbes are
sourced from the post‐selected host parental population. In contrast, correlations with abundances of non‐lineals and
externals remains at neutral levels (right plots).

Simulation Results: Our simulation results (summarized in Figure 5) demonstrate that when a host trait is significantly
mediated by heritable microbes (such as lineally acquired and possibly non‐lineally acquired microbes), then the clas‐
sical breeders equation, which only accounts for genetic factors, severely underestimates the response to selection.
In particular, for microbiome mediated traits, we find that the observed response to selection exceeds predictions
based solely on host allele counts:

Δ𝑧̄ ≥ 𝐺𝐴𝛽, (15)

where Δ𝑧̄ is the observed change in host mean trait, 𝛽 = Cov(𝑊, 𝑧)/𝑃 is the correlation coefficient of host fitness on
host trait variance (i.e., the selection gradient), and 𝐺𝐴𝛽 is predicted change in host mean trait based on the classical
breeders equation.

At the opposite extreme, using our model of microbial acquisition and assumptions on microbial inheritance,
we find that including all of the host trait mediating microbial taxa as factors in our analysis of variance substantially
overestimates the response to selection. This result occurs because many microbes will be externally acquired and
thus not transmitted across host generations (which explains why the lines associated with 𝐺𝐿𝑁𝐸 and 𝐺𝐿𝑁 coincide
for both panels of Figure 3). More precisely, including trait mediating microbial taxa that are not transmitted across
host generations (especially external microbes, but possibly also non‐lineal microbes) inflates the additive microbial
variance which leads to observations that are exceeded by predictions:

Δ𝑧̄ ≤ (𝐺𝐴 + 𝑀𝐴 + 𝐶𝐴)𝛽. (16)

In general, results from our simulations agree with our expectations described above. That is, by including only
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F IGURE 5 Comparison of change in host mean trait over a single consecutive generation (Δ𝑧̄) observed from
simulations (x‐axis) to that predicted by including different componenents of the host microbiome (y‐axis). Each dot
corresponds to an average over repeated runs for a given set of randomly drawn additive effects. Colors and column
labels follow the same pairing described in the caption for Figure 3. Blue lines have unit slope and zero intercept. This
figure demonstrates that Δ𝑧̄ is overestimated when including either external microbes (GLNE in top and bottom rows)
or non‐lineal microbes acquired from pre‐selected parents (GLN in top row), is underestimated when excluding either
all microbes (G in top and bottom rows) or non‐lineal microbes acquired from post‐selected parents (GL in bottom row).
Predictions match observations on average when including host genes and lineal microbes, but excluding non‐lineal
microbes acquired from pre‐selected parents and external microbes (GL in top row), and when including only host
genes, lineal microbes, and non‐lineal microbes acquired from post‐selected parents (GLN in bottom row).

the transmissible microbes that contribute to an intergenerational response to selection on host individuals, we obtain
the heuristic:

Δ𝑧̄ = (𝐺𝐴 + 𝑀
𝜓
𝐴 + 𝐶

𝜓
𝐴 )𝛽. (17)

The dichotomy of whether non‐lineal microbes contribute to a selection response is artificial by design. More
realistically, because different microbe individuals of the same taxon in a given host microbiome may have different
sources of ancestry (in the sense used to define sources of acquisition), microbial taxa cannot be neatly categorized by
sources of acquisition as done here. Additionally, non‐lineally sourced microbe individuals may vary in the degree to
which they contribute to a selection response because theymay be sourced from the pre‐selected parental population,
or from the post‐selected parental population, or somewhere along a gradient between the two depending on the
life‐histories of the hosts and microbes.

7 | HERITABILITIES AND TRANSMISSIBILITIES

Results from the previous sections provide insights into formulating a definition of microbial heritability. In particular,
the indices we introduce here assume only microbes acquired from sources that contribute to a response to host
selection (such as the lineally acquired and possibly non‐lineally acquired microbes, see section 6.3) are included
as trait mediating factors while calculating components of additive trait variation. Then, just as the narrow‐sense
genetic heritability, defined as ℎ2 = 𝐺𝐴/𝑃, is useful for predicting the response to selection and can be measured using
parent‐offspring correlations, we define the narrow‐sense microbial heritability as 𝑏2 = 𝑀𝜓

𝐴 /𝑃, which is also useful for
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predicting the response to selection. However, unlike ℎ2, only the lineal component of 𝑏2 will be measurable from
parent‐offspring correlations. If non‐lineal microbes contribute to a response to selection, then their contribution
to 𝑏2 may be quantified by first identifying the non‐lineal donor‐recipient pairs between the parent and offspring
populations, and then measure correlations between donors and recipients. Of course, this approach to estimating
𝑏2 depends on our simplifying assumptions on the partitioning of host microbiome into components acquired from
lineal, non‐lineal, and external sources. Because the acquisition of each taxamay be distributed across several sources,
estimates of 𝑏2 will likely require a more sophisticated correlational analysis.

On their own, the narrow‐sense heritabilities are only useful for predicting a response to selection when the
host trait is either entirely genetically mediated, or entirely microbially mediated. To obtain accurate predictions for
the response to selection when host traits are partially genetically mediated and partially microbially mediated, we
introduce notions of transmissibility. These quantities are meant to capture all components of host trait variation
explained by factors that facilitate a host response to selection (which we refer to as selective factors from hereon).
Writing 𝑃𝜓𝐴 as the component of host trait variation explained only by additive effects of selective factors, we define
the narrow‐sense transmissibility as 𝑡2 = 𝑃𝜓𝐴 /𝑃. By focusing on additive effects, we can use the same general approach
outlined in section 4 to quantify 𝑃𝜓𝐴 . Here, because we assume the only selective factors are host genes and microbes,
the narrow‐sense transmissibility becomes

𝑡2 =
𝐺𝐴 + 𝑀

𝜓
𝐴 + 𝐶

𝜓
𝐴

𝑃 . (18)

Hence, in general 𝑡2 ≠ ℎ2 + 𝑏2. Instead, writing 𝑘ℎ𝑏 = 𝐶
𝜓
𝐴 /𝑃, we can heuristically think of expanding the square (ℎ + 𝑏)2

to arrive at 𝑡2 = ℎ2 + 𝑘ℎ𝑏 + 𝑏2 where 𝑘ℎ𝑏 takes the place of the undefined symbol 2ℎ𝑏. Because 𝑘ℎ𝑏 is a covariance
it can be positive or negative. So ignoring 𝑘ℎ𝑏 while calculating 𝑡2 can positively or negatively bias predictions for a
microbiomemediated response to selection. Our work then suggests the form of the breeders equation introduced by
Lush (1937), 𝑅 = ℎ2𝑆 (where 𝑅 = Δ𝑧̄ is the response to selection and 𝑆 is the selection differential), naturally generalizes
to 𝑅 = 𝑡2𝑆 = (ℎ2 + 𝑘ℎ𝑏 + 𝑏2)𝑆. This reduces to the original expression in the absence of microbiome mediated effects.

In our framework, broad‐sense genetic heritability retains the same definition from classical quantitative genet‐
ics. In particular, the genotypic value 𝑧𝑔 is the genotypic‐microbic value 𝑧𝑔𝑚 averaged over host microbiomes. Then
the broad‐sense genetic heritability is defined as the proportion of host trait variance explained by genotypic variation:
𝐻2 = Var(𝑧𝑔)/𝑃. In analogy, the microbic value 𝑧𝑚 is the genotypic‐microbic value 𝑧𝑔𝑚 averaged over host genotypes.
To clarify that we are focusing specifically on host trait variation explained by microbes that contribute to a selection
response, we propogate the superscript 𝜓 . In particular, 𝑧𝜓𝑚 is 𝑧𝑔𝑚 averaged over host genotypes and components of
host microbiomes that do not contain selective factors. This suggests that the broad‐sense microbial heritability should
be defined as the proportion of host trait variation explained by selective microbic variation: 𝐵2 = Var(𝑧𝜓𝑚)/𝑃. Setting
𝐺𝑅 = Var(𝑧𝑔) − 𝐺𝐴 and 𝑀

𝜓
𝑅 = Var(𝑧𝜓𝑚) − 𝑀

𝜓
𝐴 the residual variances left unexplained by additive genetic and selective

additive microbial effects respectively, the broad‐sense heritabilities can then be expressed as

𝐻2 =
𝐺𝐴 + 𝐺𝑅
𝑃 , 𝐵2 = 𝑀

𝜓
𝐴 + 𝑀

𝜓
𝑅

𝑃 . (19)

In general, the sum of these broad‐sense heritabilities do not capture all of host trait variation explained by host
genotype‐microbiome pairs (𝑔,𝑚) because they do not account for covariances between allele counts and microbe
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abundances (quantified by 𝐶𝜓𝐴 ) or for residual variation left unexplained by genotypic values and microbric values
(quantified by 𝑃𝜓𝑅 − 𝐺𝑅 − 𝑀

𝜓
𝑅 , where 𝑃

𝜓
𝑅 = 𝑃 − 𝑃

𝜓
𝐴 ). More generally, if the host trait is mediated by the selective factors

𝑓 = (𝑓1, … , 𝑓𝑁), and 𝑧𝑓 is the average trait value among hosts carrying factors 𝑓 , then we define the broad‐sense
transmissibility as the proportion of phenotypic variance explained by selective factors: 𝑇2 = Var(𝑧𝑓 )/𝑃. Because we
assume the only selective factors are host genes and microbes we have 𝑧𝑓 = 𝑧𝑔𝑚 , the genotypic‐microbic value. Then,
defining the symbol 𝐾𝐻𝐵 = (𝐶

𝜓
𝐴 + 𝑃

𝜓
𝑅 − 𝐺𝑅 − 𝑀

𝜓
𝑅 )/𝑃, we obtain an expression for the broad‐sense transmissibility as

𝑇2 = 𝐻2 + 𝐾𝐻𝐵 + 𝐵2. (20)

Again, we can intuitively think about calculating the expression for 𝑇2 by expanding the square (𝐻 + 𝐵)2, with
𝐾𝐻𝐵 taking the place of the undefined symbol 2𝐻𝐵. Because 𝐺𝑅 + 𝑀

𝜓
𝑅 ≤ 𝑃

𝜓
𝑅 , the component of 𝐾𝐻𝐵 due to differences

in residual variation will always be non‐negative. However, because 𝐶𝜓𝐴 may be negative, 𝐾𝐻𝐵 will be negative when
𝐶𝜓𝐴 < 𝐺𝑅 + 𝑀

𝜓
𝑅 − 𝑃

𝜓
𝑅 . As a result, excluding 𝐾𝐻𝐵 from calculating 𝑇2 can positively or negatively bias estimates for the

proportion of host trait variation exlained by genetic and selective microbial factors.

The utility of the definitions of narrow‐sense transmissibility and narrow‐sense microbial heritability introduced
in this section for predicting a response to selection rely on a set of assumptions that simplify the process of microbial
inheritance. Future work is needed to test their utility given the complexity of within host dynamics (Gerber, 2014),
the microbiome assembly process (Costello et al., 2012), and host‐host transmission (Sarkar et al., 2024).

8 | DISCUSSION

There is growing evidence that microbes can be integral to the functioning of larger organisms (Bordenstein and Theis,
2015). Microbes associated with plant and animal hosts have been shown to contribute to fundamental organismal
processes, including development (McFall‐Ngai et al., 2013), nutrition (David et al., 2013), pathogen protection (Koch
and Schmid‐Hempel, 2011) and even behavior (Cryan and Dinan, 2012). Microbes have been suggested to provide
their plant and animal hosts with the capacity for rapid evolution (Rosenberg and Zilber‐Rosenberg, 2016; Bisschop
et al., 2022) and perhaps even to contribute to the evolutionary rescue of larger organisms from rapid environmental
change (Pillai et al., 2016; Lennon et al., 2019).

This increasing interest in host‐microbe interactions has led to a crucial need for a deeper understanding of how
host‐associated microbes influence the phenotypes of their hosts, and ultimately their evolution. But developing this
understanding has been hampered by the lack of a comprehensive theoretical framework for considering the com‐
bined influences of host genetics, host‐associated microbes and the surrounding environment on traits that emerge
from such host‐microbe systems. Theoretical quantitative genetics is uniquely positioned to provide this foundation
because it is focused on understanding the inheritance and evolution of the complex traits that result from multiple
interacting sources of variation. While quantitative genetics was initially developed only considering genetic factors,
it has been extended over the years to consider other non‐genetic heritable elements such as epigenetic alleles and
cultural memes. Here we extend quantitative genetics by formally incorporating microbiomes as potentially heritable
units.

Importantly, microbes are not merely their host’s second genome; there are fundamental differences between
microbes in a microbiome and genes in a genome. These differences make applying quantitative genetic approaches
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directly to host microbiomes problematic. As a consequence, there is a need to expand theory of quantitative genetics
to incorporate unique aspects of microbiome biology. Here, we have built on previous efforts to establish quantitative
genetic frameworks formicrobiomemediated traits (Henry et al., 2021) by generalizing the foundations of quantitative
genetic theory. Our approach provides a formal definition for the component of phenotypic variation explained by
additive effects of host allele counts andmicrobial abundances (𝑃𝐴), and how to partition this additive variance into the
classical additive genetic variance (𝐺𝐴) and the newly defined additive microbial variance (𝑀𝐴, the component of host
trait variance explained by additive effects of microbe abundances) and additive gene‐microbe covariance (𝐶𝐴, which
quantifies additive effects due to covariances between allele counts and microbe abundances across host individuals)
such that 𝑃𝐴 = 𝐺𝐴 + 𝑀𝐴 + 𝐶𝐴.

Furthermore, to make accurate predictions for microbiome‐mediated responses to selection on hosts, we found
it necessary to introduce additional partitioning of host trait variation explained by host microbiomes. In particular,
we suggest host microbiomes may be decomposed into three components: the lineal component which contains mi‐
crobes passed from parent to offspring individuals, the external component which contains microbes acquired from
the environment that have no previous associations with the host species, and the non‐lineal component which con‐
tains all remainingmicrobes. We anticipate that whether or not microbes facilitate a response to selection depends on
the microbiome component they belong to. When microbial taxa that contribute to a selection response have been
identified, we suggest quantifying 𝑀𝜓

𝐴 as the component of host trait variance explained only by the additive effects
of those taxa, and similar for 𝐶𝜓𝐴 . Using a simulationmodel, we find support for a generalized breeders equation taking
the form Δ𝑧̄ = (𝐺𝐴 +𝑀

𝜓
𝐴 + 𝐶

𝜓
𝐴 )𝛽. Building on this, we suggest definitions that generalize narrow‐sense and broad‐sense

heritabilities to account for microbes that contribute to a selection response.

From this initial expansion, we can make a number of conclusions that are worth further theoretical and experi‐
mental exploration. For instance, Figures 3 and 4 together demonstrate that not all evolutionarily important microbes
significantly correlate with host genes, and therefore negates a requirement of lineal transmission. In particular, Figure
3 shows that non‐lineal microbes sourced from post‐selected parents significantly contribute to a sustained response
to selection over several host generations. In addition, Figure 4 shows that the within‐host abundances of these
same microbes do not significantly correlate with host allele counts (where significant here means to have greater
magnitudes of correlations than external microbe abundances). Another conclusion is in the converse direction; that
not all microbes with abundances that significantly correlate with host allele counts contribute significantly to host
trait variation. For example, this may occur when the host population is structured and exhibits random genetic drift.

Both of these conclusions have important implications for how we study host‐microbe interactions and their
impact on host phenotype. The approaches commonly used for identifying the genes or microbes underlying a par‐
ticular phenotype (e.g., GenomeWide Association Studies, GWAS, or MicrobiomeWide Association Studies, MWAS)
require an understanding of how statistical associations form among phenotypes, genes and microbes. Because these
associations are not necessarily causal, and because causal pathways may not be detected via statistical associations,
there is a need for a more comprehensive theoretical foundation to guide approaches such as GWAS and MWAS.
Importantly, simply applying approaches from GWAS to control for genetic correlations from population structure to
MWAS will likely lead to significant bias due to the ecological processes that create microbe‐microbe and microbe‐
gene covariances.

In addition to developing an expanded quantitative genetic theory, another challenging but potentially very
fruitful area will be to develop statistical inference methods to estimate many of the host and microbe parameters of
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such theory. Our approaches to analysis of phenotypic variance, and definitions of heritabilities and transmissibilities
provide foundations for such inferential theory. An interesting approach for future work will be to expand genomic re‐
gression approaches for inferring quantitative genetic parameters in an expanded quantitative genetic theory (Xavier
et al., 2019). Individuals have varying degrees of genetic relatedness, and the covariance between relatedness and
phenotypic similarity among individuals is the foundation of all types of inferential approaches for quantitative genetic
parameters such as parent‐offspring regression (Rice, 2004) and twin analyses (Lynch et al., 1998).

Furthermore, recent work shows that important differences between the foundational quantitative geneticmod‐
els and instrumental (or statistical) models can lead to problems in the inference of quantitative genetic parameters
such as genetic variances and heritabilities from genomic regression if statistical sampling of marker genotypes (as
compared to causative QTL) are not taken into account (de los Campos et al., 2015). Similar development of ex‐
plicit statistical theory for inferring and estimating expanded quantitative genetic parameters (e.g., 𝑏2 and 𝑇2) will be
required in addition to further development of the foundational quantitative genetic theory.

The framework presented throughout this paper has both general components that are independent of model
assumptions, and specific componenents that are obtained by applying simplifying assumptions. In particular, both
the approach to analysis of phenotypic variance in section 4 and our definitions of sources of microbial acquisition in
section 6.1 are independent of model assumptions. However, our results on the response of a microbiome mediated
trait to selection (illustrated by Figure 5 and equations 15‐17) were obtained following a series of simplifying as‐
sumptions. These include independence of microbiome components (see section 6.2) and assumptions regarding the
inheritance of microbiomes (summarized in Figure 2). In effect, our simulation model ignores within‐host microbiome
dynamics, the assembly process, and host‐host microbe transmission, which has allowed us to focus on the effects
of a novel inheritance mechanism on the dynamics of a microbiome mediated quantitative character. Future work is
needed to study models in which these assumptions are relaxed, and to apply our general framework of phenotypic
variance analysis to both simulated and empirical data.

9 | CONCLUSION

Microbes can be integral to the functioning of their animal and plant hosts, yet it is not well understood how micro‐
biomes contribute to host fitness and evolution. This knowledge gap is due at least in part to the lack of a compre‐
hensive theoretical framework for modeling how host‐microbiome system‐level traits emerge from the interactions
of host genes, microbiome, and environment. We provide one such framework, by expanding theoretical quantita‐
tive genetics to include unique aspects of host‐associated microbiomes, including multiple forms of Mendelian and
non‐Mendelian inheritance. This expansion leads to a formalization of several important concepts, including micro‐
bial heritabilities and transmissibilities, as well as fundamental quantities such as additive gene‐microbe covariances.
In addition, our framework provides an approach to partitioning quantitative trait variation into host‐ genetic and
microbial components, allowing the theoretical exploration of how the joint contribution of host and microbiome to
trait variation influences the evolution of host‐microbiome systems. We consider our theoretical expansion as a first
step toward a comprehensive incorporation of host‐associated microbes into quantitative genetics.
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