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abstract: Studies of coevolution in the wild have largely focused
on reciprocally specialized species pairs with striking and exagger-
ated phenotypes. Textbook examples include interactions between
toxic newts and their garter snake predators, long-tongued flies and
the flowers they pollinate, and weevils with elongated rostra used to
bore through the defensive pericarp of their host plants. Although
these studies have laid a foundation for understanding coevolution
in the wild, they have also contributed to the widespread impression
that coevolution is a rare and quirky sideshow to the day-to-day grind
of ecology and evolution. In this perspective, we argue that the focus
of coevolution has been biased toward the obvious and ignored the
cryptic.We have focused on the obvious—studies of reciprocally spe-
cialized species pairs with exaggerated phenotypes—mainly because
we have lacked the statistical tools required to study coevolution in
more generalized and phenotypically mundane systems. Building from
well-established coevolutionary theory, we illustrate how model-based
approaches can be used to remove this barrier and begin estimating
the strength of coevolutionary selection indirectly using routinely col-
lected data, thus uncovering cryptic coevolution in more typical com-
munities. By allowing the distribution of coevolutionary selection to
be estimated across genomes, phylogenies, and communities and over
deep timescales, these novel approaches have the potential to revolution-
ize the way we study coevolution. As we develop a road map to these
next-generation approaches, we highlight recent studies making no-
table progress in this direction.

Keywords: species interactions, comparative methods, ecological
networks, community structure.

Introduction

Reciprocal evolutionary change between interacting spe-
cies—coevolution—has long been a guiding principle for
understanding how traits of interacting species evolve and
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how species interactions themselves diversify (Ehrlich and
Raven 1964; Janzen 1980; Berenbaum et al. 1986; Thompson
1994; Agrawal et al. 2012). The past several decades have
seen an explosion of coevolutionary theory, largely driven by
mathematical and computational advances that make study-
ing coevolution in complex genetic, phenotypic, and eco-
logical systems feasible (Dieckmann and Law 1996; Otto
and Nuismer 2004; Dercole et al. 2006; Gandon and Otto
2007; M’Gonigle et al. 2009; Nuismer et al. 2013; Debarre
et al. 2014; Nuismer 2017; Week et al. 2021). The resulting
models have shed new light on long-standing questions in
ecology and evolutionary biology and identifiedmyriadways
coevolution influences the structure, function, and diversi-
fication of biological systems. For instance, analysis of mul-
tilocus population genetic models has refined our under-
standing of the conditions under which coevolution favors
sexual reproduction or increased mutation rates (Otto and
Nuismer 2004;M’Gonigle et al. 2009). Quantitative genetic
and adaptive dynamics methods have clarified when coevo-
lution favors increased phenotypic and taxonomic diversifi-
cation (Doebeli and Dieckmann 2000; Yoder and Nuismer
2010). Furthermore, new moment-based approaches and
network-based methods have illuminated how coevolution
influences the structure, function, and stability of ecolog-
ical networks and communities (Nuismer et al. 2013, 2018;
Guimaraes et al. 2017). Together, these newmethods have
revolutionized coevolutionary modeling by allowing us to
move well beyond localized pairwise interactions mediated
by a single genetic locus or quantitative trait.
As the complexity and scope of mathematical and com-

putational models of coevolution have raced ahead, the devel-
opment of statistical approaches for estimating the strength
and form of coevolutionary selection in natural populations
has fallen woefully behind. Coevolutionary selection is a prod-
uct of genotype#genotype interactions for fitness and is
the central process responsible for coevolution and recipro-
cal adaptation. As a consequence, empiricists have few tools
hicago. All rights reserved. Published by The University of Chicago Press for
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at their disposal if they wish to quantify the importance of
coevolutionary interactions amongmore than a single, iso-
lated pair of interacting species. Even for a single, isolated
species pair, rigorously demonstrating coevolutionary se-
lection is a formidable task, requiring knowledge of indi-
vidual genotypes or phenotypes and the fitness consequences
of encounters between individuals (Brodie and Ridenhour
2003; Ridenhour 2005; Heath and Nuismer 2014; MacPher-
son et al. 2018). Given this, it is little surprise that the best-
studied cases of coevolution involve rather unusual systems
with highly exaggerated traits or extremely tight reciprocal
specialization (Zangerl and Berenbaum 2003; Toju and Sota
2006; Hanifin et al. 2008; Pauw et al. 2009; King et al. 2011).
The unfortunate consequence of focusing on these unusual
or highly specialized biological systems, however, is the per-
ception that coevolution is a rare and quirky sideshow to
the main evolutionary acts shaping the diversity of life on
a day-to-day basis.
Reconciling the diverse consequences of coevolution dem-

onstrated by emerging theory with its perceived rarity re-
quires the development of new statistical approaches that
allow the strength of coevolutionary selection to be esti-
mated more broadly. By coupling coevolutionary models
with data that can be collected rapidly and efficiently from
diverse systems, these new approaches will allow us to es-
timate the strength of cryptic coevolutionary selection in
systems where exaggerated traits and reciprocal specializa-
tion are not pronounced. The ultimate goal of these new
methods should be to move from estimating the strength
of coevolutionary selection between a pair of genes, traits,
or species to estimating the distribution of coevolutionary
selection within entire genomes, phenomes, and commu-
nities. Here, we outline recent progress that has beenmade
in this direction by moving away from the direct estima-
tion of coevolutionary selection using conventional statis-
tical approaches and toward model-based statistical ap-
proaches that estimate coevolutionary selection even when
cryptic.
Direct Measurement of Pairwise Coevolution Is Hard

The distinguishing feature of coevolution is reciprocity, and
it is that reciprocity that makes it hard tomeasure in natural
systems. Two species A and B coevolve when evolutionary
change in species A alters the pattern of selection experi-
enced by species B, which in turn leads to an evolutionary
change in species B that modifies selection acting on spe-
cies A (Janzen 1980). Establishing the existence of this re-
ciprocal evolutionary feedback between species, and un-
derstanding how it influences ecological and evolutionary
change, is the essential challenge of coevolutionary biology.
However, the importance of coevolution cannot generally
be evaluated using conventional methods, such as estimat-
ing selection gradients, comparing divergence of quantitative
traits and neutral molecular markers (QST-FST), or compar-
ing rates of synonymous and nonsynonymous substitution,
all of which deal with the effects of selection on single spe-
cies. Instead, demonstrating coevolution requires methods
that explicitly estimate the strength of the genotype#geno-
type or phenotype#phenotype interactions for fitness that
underpin reciprocal selection (fig. 1).
Although a few methods now exist to formally estimate

the strength of reciprocal selection from phenotypic data
(Ridenhour 2005) or to scan genomes for genotype#ge-
notype interactions (MacPherson et al. 2018), these meth-
ods have not yet been broadly applied. The reason these
methods have not been widely adopted is largely their strin-
gent data requirements: highly replicated measurement of
phenotypes and/or genotypes for interacting pairs of indi-
viduals and the consequences of the interaction for each
individual’s lifetime fitness.
A consequence of the challenges associated with mea-

suring coevolution directly in the wild then is an overre-
liance on the obvious. Much of what we know comes from
well-studied systems with unique natural history that allows
genotype#genotype or phenotype#phenotype interactions
for fitness to be demonstrated using clever and labor-intensive
experimental manipulations (e.g., Zangerl and Berenbaum
2003; Toju and Sota 2006; Pauw et al. 2009). For example,
coevolution has been established as an important mecha-
nism driving the escalation of offensive and defensive traits
in the interaction between the Japanese camellia, Camellia
japonica, and its seed predatory weevil, Curculio camelliae
(Toju and Sota 2006). Demonstrating the potential for co-
evolution in this system is facilitated by the existence of
wildly exaggerated traits with a clear functional link to the
fitness consequences of interaction (rostrum and pericarp)
and the feasibility of executing pairwise performance trials
in the laboratory that can be used to establish phenotype#
phenotype interactions for fitness. Similarly, coevolution has
been implicated in the interactions between the long-tongued
fly,Moegistorhynchus longirostris, and the plant it pollinates,
Lapeirousia anceps, using elegant experimental manipula-
tions that allow phenotype#phenotype interactions for
fitness to be established (Pauw et al. 2009). Here too, estab-
lishing the potential for coevolution is facilitated by the ex-
istence of exaggerated traits with clear functional links to
fitness. Even in these wonderfully amenable systems, how-
ever, direct estimation of coevolutionary selection in the field
has remained elusive. The reason is that estimating reciprocal
(coevolutionary) selection directly requires measuring the
traits of naturally interacting pairs of individuals and at least
a surrogate of their lifetime fitness. This same scenario plays
out over and over again, subtly and implicitly shifting our
perception of coevolution through ascertainment bias.We
now collectively, even if subconsciously, expect coevolution
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to be most important in that unusual subset of interactions
mediated byflashy and exaggerated traits. At the same time,
we may be ignoring countless examples of cryptic coevolu-
tion where the signature of the coevolutionary process is
less pronounced (Thompson 1994, 2005a).
Indirect Methods Expand the Scope
of Coevolutionary Studies

Advances in mathematical and computational statistics are
beginning to open the door to new methods that allow the
strength of coevolutionary selection to be estimated by cou-
pling mechanistic models of coevolution to more readily col-
lected types of data (table 1). One advantage shared by many
of thesemethods is that they allow coevolutionary selection
to be quantified indirectly without requiring direct mea-
surements of the effect of one species on the fitness of an-
other. These methods promise to broaden our perception
of coevolution’s generality and taxonomic distribution and
greatly increase the scale of coevolutionary studies. By avoid-
ing the need to directly estimate genotype#genotype or phe-
notype#phenotype interactions for fitness in natural pop-
ulations, these new methods can be scaled up to study the
distribution of coevolution across multiple populations, en-
tire genomes, or clades of interacting species (fig. 2).
In the sections that follow, we provide a brief overview of

some important progress in this direction, highlighting new
methods for estimating the strength of coevolutionary selec-
tion indirectly using spatially replicated genomic data, phe-
notypic data, data from metacommunities of interacting spe-
cies, and data over deep timescales from phylogenetic trees.

Identifying the Intensity and Distribution
of Coevolutionary Selection across Genomes

Advances in sequencing technology are making it increas-
ingly feasible to get high-resolutionmarker data frommul-
tiple individuals across multiple populations. These new tech-
nologies have brought to life the possibility of identifying loci
involved in coevolution by scanning for genotype#genotype
interactions for fitness using coevolutionary genome-wide
association studies (co-GWAS;MacPherson et al. 2018;Wang
et al. 2018; Ebert and Fields 2020). Co-GWAS extend clas-
sical genome-wide association studies to pairs of interacting
species. In brief, they scan the genomes of the interacting spe-
cies for genetic markers in one species that interact statis-
tically with genetic markers in the other species to influence
the outcome of the interaction (e.g., infection or resistance).
Unfortunately, as with other direct approaches for investi-
gating coevolution, this requires information on the outcome
or fitness consequences of the interaction for both members
of an interacting species pair. Thus, even though it is now
feasible to generate genomic sequence data for a large num-
ber of replicate pairs of interacting individuals, co-GWAS
igure 1: Hypothetical phenotype#phenotype interactions for fitness in a pollinating animal (left) and the plant it pollinates (right). An-
al fitness is maximized when the animal has a slightly larger trait value than the plant it pollinates, as might be the case when nectar extraction
maximized by having a beak slightly longer than the depth of the plant’s corolla. Plant fitness is also maximized by having a slightly larger trait
alue than the animal pollinating it, as might be the case if pollen transfer is maximized when a longer corolla requires more sustained pollinator
ffort to reach the nectar reward. The result is a phenotype#phenotype interaction where the fitness of each individual depends not only on its
wn trait value but also on the trait value of individuals with which it interacts.
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are likely to be restricted to laboratory experiments for the
foreseeable future becausemeasuring the outcomes and re-
ciprocal fitness consequences of individual interactions in
the wild remains intractable inmost systems. Indirect, model-
based approaches circumvent the challenge of measuring
reciprocal fitness consequences directly and thus expand the
range of systems where the genomic signature of cryptic co-
evolution can be investigated.
For example, one way to identify loci experiencing coevo-

lutionary selection is to scan the genome for genetic markers
that are correlated across species (Nuismer et al. 2017). This
approach builds on techniques developed for studying local
adaptation to the abiotic environment that scan the genome
for markers that correlate with spatially structured environ-
mental variables, such as water stress, soil nutrient andmin-
eral composition, and temperature profiles (Coop et al. 2010).
The coevolutionary extension, then, is to scan the genomes
of interacting species in search of markers that covary across
space or time (Nuismer et al. 2017). Strong theoretical sup-
port exists for this approach, demonstrating that local ad-
aptation in species interactions results from spatial covari-
ation between genes of the interacting species (Nuismer
and Gandon 2008; Gandon and Nuismer 2009). Using this
method, candidate coevolving loci are identified as inter-
specific marker pairs that correlate more strongly than ex-
pected under a neutral model. In cases where strong local
adaptation has been previously demonstrated and isolation
by distance is weak, thismethod can successfully identify those
loci currently experiencing coevolutionary selection (Nuismer
et al. 2017). More recently, an approach to distinguishing loci
responding to coevolutionary selection from those evolving
neutrally has also been developed for cases where genomic
data are available from replicate natural populations (Maerkle
and Tellier 2020). This approach uses a combination of co-
alescent simulations and approximate Bayesian computa-
tion (ABC) to evaluate support for neutral and coevolutionary
models given that candidate loci have been preidentified. The
computational feasibility of using this method as a genomic
scan and its statistical performance when used in this way
remain unexplored however.
These initial efforts to develop indirectmethods for iden-

tifying loci responding to coevolutionary selection show
promise but lag behind similar approaches developed for
identifying loci within single species that contribute to lo-
cal adaptation (Hoban et al. 2016). Specifically, existing co-
evolutionary approaches do not yet integrate effective meth-
ods for distinguishing the genomic signature of coevolution
from the background noise created by the interaction of drift,
mutation, and geneflow in spatially structured populations
(Lotterhos and Whitlock 2015). In particular, as spatial pop-
ulation genetic structure becomes more pronounced, the co-
evolutionary approach described above suffers from a high
rate of false positives (Nuismer et al. 2017). An additional
challenge is distinguishing between interspecific correlations
attributable to coevolutionary selection and those attribut-
able to shared adaptation to a common environment or un-
didirectional adaptation of one partner to another. Similar
problems—and solutions—in population genetics point the
way forward (Hoban et al. 2016). Overall, adapting methods
that remove cryptic stratification by including genetic relat-
edness as a random effect offer a promising path to more ro-
bust indirect methods for identifying coevolving loci.
Table 1: Indirect, model-based approaches for inferring coevolution
Modeling
approach
 Scale
Statistical
method
 Data required
 Limitation(s)
 Reference
Population
genetic
simulations
Metapopulation
 Approximate
Bayesian
computation
Genetic marker frequencies
from a pair of inter-
acting species across
multiple populations
Assumes populations are
independent
Maerkle and
Tellier 2020
Mathematical
quantitative
genetics
Metapopulation
 Maximum
likelihood
Population mean pheno-
types for a pair of inter-
acting species across
multiple populations
Assumes weak coevolu-
tion; assumes popula-
tions are independent;
assumes fixed genetic
variance
Week and
Nuismer
2019
Quantitative
genetic
simulations
Metapopulation
 Approximate
Bayesian
computation
Population mean pheno-
types for a pair of inter-
acting species across
multiple populations
Assumes fixed genetic
variance
Nuismer and
Week 2019
Quantitative
genetic
simulations
Clade
 Maximum
likelihood
Phenotypes and phyloge-
netic relationships for a
community of inter-
acting species
Assumes weak coevolu-
tion; assumes fixed
genetic variance
Drury et al.
2016
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Estimating the Intensity and Distribution
of Coevolutionary Selection across Phenotypes

Indirect approaches inferring coevolutionary selection across
phenotypes have a long history, in part spurred by Thomp-
son’s (2005b) geographicmosaic theory of coevolution. This
theory led to a proliferation of studies indirectly investigat-
ing species interactions across multiple populations using
species’ phenotypes. In many cases these studies measure
quantitative traits of interacting species across replicate pop-
ulations and focus on spatial patterns of trait covariation
(Brodie and Ridenhour 2003; Zangerl and Berenbaum 2003;
Toju and Sota 2006; Pauw et al. 2009). Often, positive cor-
relations have been interpreted as providing evidence for
coevolution even while recognizing that multiple nonco-
evolutionary mechanisms can also lead to similar patterns
and correlations (Gomulkiewicz et al. 2007; Nuismer et al.
2010). In some systems with amenable natural history, co-
evolutionary and noncoevolutionary hypotheses can be
distinguished by employing the types of experimental ma-
nipulation described in “Direct Measurement of Pairwise
Coevolution Is Hard” (Toju and Sota 2006; Pauw et al.
2009). When these experimental manipulations are not pos-
sible, patterns of trait covariation are ambiguous with re-
spect to inferring coevolution (Nuismer et al. 2010).
Newer approaches move beyond trait correlations and

can be applied to a much greater range of systems. These
approaches use statistical methods and spatially replicated
data to parameterize coevolutionary models and compare
their relative support with models that do not include co-
evolutionary selection. For example, using previously devel-
oped mathematical models predicting the bivariate distribu-
tion of population mean trait values for interacting species
across a metapopulation, Week and Nuismer (2019) de-
rived maximum likelihood solutions for the model param-
eters quantifying the strength of coevolutionary selec-
tion. The likelihood of the parameterized coevolutionary
model can then be compared with the likelihood of the
simpler model lacking coevolution using a likelihood ratio
test. Application to the well-studied interactions between
the Japanese camellia,Camellia japonica, and its seed pred-
atory weevil, Curculio camelliae (Toju and Sota 2006), and
between the long-tongued fly, Moegistorhynchus longirostris,
and the plant it pollinates, Lapeirousia anceps (Pauw et al.
2009), supported the hypothesis of ongoing coevolutionary
selection in both systems.Moving forward, these approaches
can be easily applied to systems lacking obviously exaggerated
traits but where cryptic coevolution between interacting spe-
cies is suspected.
In addition to identifying the signature of coevolution,

model-based approaches allow parameters defining the
strength of coevolutionary selection to be estimated, creat-
ing the possibility of predicting the future dynamics and
outcome of the coevolutionary process. Nuismer and Week
(2019) developed a Bayesian extension of their method that
allows for strong selection and gene flow among populations
while maintaining many of the other simplifying assump-
tions of quantitative genetic models (e.g., Gaussian pheno-
type distributions). Parameter estimates from this method
are reliable as long as a large number of populations have
been sampled and reasonable estimates are available for im-
portant background parameters, such as effective population
sizes and additive genetic variances.
These emerging statistical approaches remove one of the

key impediments to studying coevolution and quantifying
coevolutionary selection: the need to conduct experiments
demonstrating phenotype#phenotype interactions for fit-
ness. Unfortunately, as currently implemented these ap-
proaches are univariate and focus on a single pair of pre-
defined phenotypes with an obvious mechanistic connection
to the outcomeof the interaction. To expand the reach of these
methods and realize their full potential to remove biases in
the types of systems exposed to coevolutionary study, they
need to be generalized to screen multivariate suites of can-
didate traits, not just those exaggerated traits that so often
define the interactions chosen for coevolutionary studies.
Because coevolutionarymodels that integrate multidimen-
sional phenotype space already exist for single populations
(Gilman et al. 2012; Debarre et al. 2014) and simple com-
munities (Nuismer andDoebeli 2004; Nuismer 2017; Assis
et al. 2020), a clear path exists to realizing this next gener-
ation of multidimensional inference tools. A greater con-
straint to moving this line of research forward is the lack
of spatially replicatedmultivariate trait data formost inter-
acting species pairs and the increasingly formidable chal-
lenge of estimating background parameters, such as the
additive genetic variance-covariance matrix for each species.
An additional challenge that arises with multivariate trait
data is the potential for spurious inference driven by selec-
tion acting on correlated traits. There is every reason to think,
however, that with populationmean phenotypes estimated
for a suite of candidate traits in each species across a large
number of replicate populations, it will be possible to iden-
tify the subset of traits experiencing coevolutionary selec-
tion, including those cryptically coevolving traits that show
no overt signs of exaggeration. As this methodology is ex-
tended to larger numbers of traits and systems, we will also
begin to understand the phenomic distribution of coevolu-
tionary selection and its overall influence on integrated or-
ganismal phenotypes.
Estimating the Intensity and Distribution
of Coevolution within Communities

Work over the past several decades has made enormous
strides in increasing our understanding of the distribution
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and network structure of ecological interactions within com-
plex biological communities (Gómez et al. 2009; Thebault
and Fontaine 2010; Poisot et al. 2012; Guimaraes et al. 2017;
de Andreazzi et al. 2020; Segar et al. 2020). This understand-
ing helps to predict how communities might respond to
extirpation of individual species or other anthropogenic dis-
turbances (May 1973; Montoya and Sole 2003; Memmott
et al. 2004; Rezende et al. 2007; Nuismer et al. 2018). What
we still know almost nothing about, however, is the distri-
bution of coevolutionary selection within ecological commu-
nities. For instance, is coevolutionary selection generally fo-
cused on a small subset of reciprocally specialized species
pairs, or is it more broadly distributed throughout the com-
munity? Do stereotypical patterns exist in the network struc-
ture of coevolutionary selection? Is coevolutionary selection
sufficiently strong and widespread for it to influence the re-
sponse of communities to disturbance?Answering these fun-
damental questions about the nature of coevolution at the
scale of entire communities requires overcoming a profound
technical challenge: devising methods that allow the strength
of coevolutionary selection to be estimated for the n(n2 1)=2
species pairs that make up a community of size n. Unfortu-
nately, directly estimating the strength of coevolutionary se-
lection experienced by all possible pairs of species is, for all
intents and purposes, an insurmountable challenge. Instead,
progress will require the development of indirect model-
based approaches that estimate the distribution of coevolu-
tionary selection from data that can be collected at the scale
of entire communities (fig. 3).
One existing set of methods that come close to revealing

insights about coevolution focuses on community assembly
(Kraft et al. 2007). The field of phylogenetic community
ecology uses phylogenetic data in the form of trees with
branch lengths that show the timing of divergence among
present-day species (Webb et al. 2002). These trees are usu-
ally accompanied by other information about these species,
such as how they co-occur in communities and the traits that
those species have (Perronne et al. 2017). By comparing pat-
terns in the trees and trait data with what one would expect
under a neutral, noninteractive model, one can detect the
interactions that species have with one another and with their
environment (Kraft et al. 2007). For example, a pattern where
species in local communities are overdispersed on phylo-
genetic trees is often interpreted as the imprint of compe-
tition among species with similar traits (Webb et al. 2002).
Similar approaches can also be carried out with fossil data,
where models support inferences of clade interaction and
replacement over long timescales (Lidgard et al. 1993). Un-
fortunately, most current approaches to macroevolutionary
community assembly relate to coevolutionary theory only
tangentially and do not yield quantitative estimates for the
strength of coevolutionary selection.
Figure 3: Development of indirect methods will allow us to move away from describing connectance among community members (left) and
toward a richer description of how the strength of selection imposed by interactions is distributed (right).
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The limitations of phylogenetic community ecology could
be overcome by building on a growing collection of mech-
anistic coevolutionary models predicting how communi-
ties of interacting species evolve and coevolve (Dieckmann
and Law 1996; Loeuille 2010; Nuismer et al. 2013; Cortez
2016; Andreazzi et al. 2017). These models generally focus
on communities where coevolutionary interactions between
species are mediated by a single quantitative trait, such as
phenology in plants or body size in animals, and can be bro-
ken down into two broad types. In the first type, feedbacks
between ecology and evolution are assumed to be negligi-
ble, reducing model complexity sufficiently for analytical
solutions to be derived in some cases (e.g., Nuismer et al.
2013). The second type of model is more general and di-
rectly integrates the dynamic interplay between coevolu-
tion and population dynamics (e.g., Dieckmann and Law
1996). Although these models rarely admit simple analyt-
ical solutions, they can be easily simulated to generate pre-
dictions for coevolution’s influence on the ecological struc-
ture and function of communities. Both types of models
can be used to develop indirect methods for estimating the
distribution of coevolutionary selection within communities,
but the methods used in each case differ.
A plausible path to inferring the contemporary strength

of coevolutionary selection among species pairs within a com-
plex community could capitalize on existing coevolutionary
models to develop maximum likelihood and Bayesian ap-
proaches. For thosemodels that focus on only evolutionary
dynamics, previous work has derived analytical predictions
for the equilibrium distribution of species’ trait means as a
function of the strength of coevolutionary selection (Nuismer
et al. 2013). Specifically, this work studiedmutualistic coevo-
lution between plants and animals and demonstrated that
the phenotypes of plant species and animal species follow
distributions with the mean and variance of plant and an-
imal groups defined by the average strength of coevolution-
ary selection and a suite of background parameters. Conse-
quently, it is possible to calculate the probability of observing
any set of plant and animal phenotypes as a function of the
strength of coevolutionary selection as long as independent
estimates of key background parameters are available. Al-
though implementing a maximum likelihood approach in
this vein is straightforward from a mathematical and com-
putational standpoint, its utility is likely to be restricted by
the sparse availability of estimates for important background
parameters, such as the strength of abiotic stabilizing selec-
tion and additive genetic variation. For models that explicitly
track joint evolutionary and ecological dynamics, the chal-
lenge is greater because of an increase in model complexity
and parameter richness but so are the opportunities for ro-
bust inference. As a first pass, the assumption that an eco-
logical and evolutionary equilibrium has been reached could
be used to simulate the joint distribution of mean pheno-
types and population densities at steady state. Integrating
these steady-state simulations into an ABC framework would
allow the strength of coevolution to be estimated if prior dis-
tributions for other model parameters could be sufficiently
well-defined. An important assumption of these approaches,
as they exist now, is the absence of phylogenetic constraints
on phenotypic evolution. Thus, a rich area of future devel-
opment will be developing methods that merge community-
level coevolution with phylogenetic history.
Inferring the Historical Intensity and Distribution
of Coevolution over Deep Time

A suite of methods allow investigation of the effects of co-
evolution over macroevolutionary timescales (Weber et al.
2017; Harmon et al. 2019; Hembry and Weber 2020). These
methods analyze either fossil occurrence data or phyloge-
netic trees, comparing patterns in the data to what one would
expect if species were not interacting (Nuismer and Harmon
2015;Manceau et al. 2017).Macroevolutionary approaches
to coevolution are appealing in their potential ability to un-
cover patterns that emerge over very long timescales. The
confluence of new methods and better data has resulted in
a suite of studies showing convincingly that species inter-
actions influence macroevolution (Drury et al. 2016; Harmon
et al. 2019). However, the models that can be fitted to com-
parative data are often simplistic and/or phenomenological.
This limitationmeans that currentmethods are good at de-
tecting the imprint of interactions on long-term data but
can be only weakly connected to the coevolutionary models
of species interactions discussed elsewhere in this article.
Most macroevolutionarymethods do not even allow defin-
itive inference in favor of coevolution as defined in this article.
For example, patterns of phylogenetic signal or cophylogeny
can result from many distinct processes, some of which are
not the result of coevolution. In this section, we give a brief
overview of current methods and suggest ways to better in-
tegrate them with microcoevolutionary models.
A major focus in the macroevolutionary study of species

interactions has been on the evolutionary dynamics of spe-
cies’ traits. Here, the focus is on detecting the imprint of
coevolution on the temporal dynamics of trait evolution,
either using fossil time-series data or fitting models to trait
evolution along the branches of a phylogenetic tree. In both
of these fields, macroevolutionary models for species trait
evolution originally focused on a suite of randomwalkmod-
els, including Brownian motion, Ornstein-Uhlenbeck, and
various modifications (Felsenstein 1985; Martins and Hansen
1997). For reasons more related to statistical inference than
biology, these models long assumed that species evolve in-
dependently of one another, precluding any direct inferences
of species interactions and coevolution. This limitationhas
been overcome by newermodels in both comparativemethods
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and paleontology that allow interactions to affect trait evo-
lution (e.g., Nuismer and Harmon 2015; Drury et al. 2016,
2018; Manceau et al. 2017; Weber et al. 2017; Adams and
Nason 2018). In turn, empirical analyses have shown that
models with species interactions tend to fit data better than
models without (Drury et al. 2016). A good recent exam-
ple is Lomascolo et al. (2019), which combines interaction
networks, models of trait evolution, and ancestral state re-
construction to infer coevolution between plants and their
pollinators.
However, much more work needs to be done. For one

thing, most current approaches are univariate and do not
allow investigation of the interactions of multiple traits si-
multaneously. Additionally, insufficient attention has been
paid to the distinction between coevolution and other types
of interactive models, such as models where one species
evolves in response to the environment and another evolves
in response to the first species. The machinery to connect
microscale and macroscale coevolutionary models is now
in place, and such approaches could potentially be devel-
oped further to shed light on the diverse macroevolution-
ary theories that include species interactions and, presum-
ably, require coevolutionary dynamics.
Synthesis: Three Guidelines for the Future Study
of Coevolution

Future investigations of coevolution can take advantage of
advances in coevolutionary theory, computational statistics,
and the availability of genomic data to build understanding
in a more effective and efficient manner. We suggest that
three guiding principles, all derived from the above synthe-
sis of theory and data, will help streamline future research
and fill the remaining gaps between theory and data.
Develop Coevolutionary Theory That Can Be Tested
Using Real, Rather than Idealized, Data

A strong predictor of the utility of any method is whether
the required data already exist or can be easily collected. This
is the primary advantage of indirect methods for studying
coevolution: they can be designed to use data that are rel-
atively easy to collect and/or that already exist. In contrast,
much coevolutionary theory has been aloof to empirical
limitations and focused primarily on identifying unifying
principles. Consequently, scientific advance depended largely
on the creativity of a relatively small handful of experimen-
talists and field biologists who worked in systems amenable
to clever manipulations (Brodie et al. 2002; Benkman et al.
2003; Zangerl and Berenbaum 2003; Toju and Sota 2006;
Pauw et al. 2009). We argue that it is time to develop a more
balanced portfolio of coevolutionary theory where signif-
icantly greater effort focuses on developing statistical and
computational methods that allow models of the coevolu-
tionary process to be competed against one another using
readily available data. This development will democratize
coevolutionary biology by making it possible to pursue and
answer fundamental questions in a wider variety of systems.
Build Flexible Statistical Methods That Directly Tie
Coevolutionary Models to Data

Historically, connections between empirical data and co-
evolutionary theory have relied on testing qualitative pre-
dictions from theory using standard statistical analyses. Al-
though this has led to many important advances, it is also
limiting in two key ways. First, this approach enables only
qualitative tests of coevolutionary theory. Thus, we are of-
ten left with simple black-and-white depictions of colorful
continuous processes. Second, this classical approach does
not enable us to predict or forecast how coevolution will pro-
ceed or how the process will be influenced by perturbations.
In contrast, statistical methods that parameterize coevolu-
tionary models with data open the door to predicting the
future path of coevolution and allow the consequences of
perturbations to be explored. We suggest that the most flex-
ible and general approaches will be simulation-based models
parameterized using methods such as ABC.
Rigorously Evaluate the Performance
of Model-Based Statistical Methods

The performance of model-based statistical methods can
be assessed in many ways, but the most straightforward ap-
proach relies on the analysis of simulated data. The sim-
plest implementation is to simulate data using the same
model that powers the statistical method. In this idealized
scenario, we expect the statistical method to perform well,
accurately estimating parameter values and type I and II
errors in cases where they are relevant. When it does not,
it suggests model parameters may not be identifiable from
the data and/or summary statistics used to describe the data.
Even when a method passes this initial test, however, it is
important to evaluate how well it works when data are sim-
ulated using models that make different assumptions or have
slightly different structure. Here, the goal is to get a better
feeling for how well we expect the model to work when it
is applied to real data—data that will inevitably violate the
underlying model in some way, shape, or form. A comple-
mentary approach to evaluating the performance of the sta-
tistical method and also the explanatory power of the under-
lying model relies on splitting the data into “training” and
“test” sets. Although generally applied within the realm of
machine learning, this method can be applied to any model-
based approach by estimating model parameters using the
training set of the data and then simulating the values of
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the data expected under the fitted model to compare with
the test set. To our knowledge, this cross-validation approach
has yet to be taken within coevolutionary biology and would
represent an important advance.
Conclusion

Advancing our understanding of coevolution will require
new methodologies that allow the strength of coevolution
to be assessed more broadly and in a way that allows cryp-
tic coevolution to be uncovered. Although still in their in-
fancy, model-based statistical methods that do not require
direct estimation of fitness for interacting individuals hold
great promise because they remove the primary obstacle to
empirical investigation of coevolution, allowing a more di-
verse range of systems to be explored. These emerging in-
direct methods can capitalize on what is now a relatively
comprehensive collection ofmathematicalmodels describ-
ing how coevolution structures phenotypes and genotypes
over space and across both micro- and macroevolutionary
timescales (Nuismer 2017). Broad application of these indi-
rectmethods will provide a robust description of the distribu-
tion of coevolution across genomes, populations, and species
and enhance our ability to predict how communities will re-
spond to increasing levels of anthropogenic disturbance.
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