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Abstract

I derive a novel stochastic equation for the evolution of the additive genetic variance-covariance matrix G in response
to mutation, selection, drift, and fluctuating population size. Common wisdom holds that G should respond to drift
only as a scaled reduction. In contrast, I find that drift causes drastic and predictable shifts in the orientation of G
by driving genetic correlations to their extremes. Biologically, this is a consequence of linkage build-up introduced by
drift. I compare these theoretical results to empirical observations based on experiments conducted by Phillips et. al.
(2001). Additionally, to derive the model of G-matrix evolution, I developed a novel synthetic framework for modelling
ecological and evolutionary dynamics of populations carrying multivariate traits. By striking a balance between genetic
detail and analytical tractability, and by minimizing requisite technical background, this framework is optimized for
deriving new models across a wide range of topics in population biology. Foundations of the framework are formalized
by the theory of measure-valued processes, but application of the framework only requires multivariate calculus, and
heuristics are presented in the main text for making additional calculations involving stochastic processes. Collectively,
this work establishes a powerful framework enabling efficient formal analysis of integrated population processes across
evolution and ecology, and its potential for making new discoveries is illustrated by novel findings on fundamental aspects
of G-matrix evolution.
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1. Introduction1

A fundamental principle of evolutionary biology is that random2

genetic drift erodes heritable variation at a rate inversely3

proportional to effective population size. At the level of allele4

frequencies, models for the distribution of genetic variation5

responding to drift are well-known (Kimura, 1964, 1968;6

Ewens, 2004; Hill and Robertson, 1966). In contrast, at the7

level of quantitative characters, models of additive genetic8

variation responding to drift focus on the average outcome using9

deterministic models (Latter, 1970; Bulmer, 1972; Lande, 1976,10

1980; Chakraborty and Nei, 1982; Turelli and Barton, 1994;11

Lynch and Hill, 1986; Bürger, 2000; Barton and Turelli, 2004;12

Débarre and Otto, 2016; Walsh and Lynch, 2018). Empirical13

work has supported theoretical predictions for the average14

response of additive genetic variation to drift (Phillips et al.,15

2001; McGuigan et al., 2005; Whitlock et al., 2002), but has also16

emphasized the need to predict the distribution of outcomes17

(Phillips et al., 2001; Whitlock, 1995) especially for multivariate18

traits and genetic covariances (Phillips and McGuigan, 2006;19

Mallard et al., 2023a).20

In the setting of multivariate traits, a common summary 21

statistic for genetic architecture is the G-matrix. This matrix 22

has the additive genetic variance (i.e., the heritable component) 23

of each trait on the associated diagonal entry. Off-diagonal 24

entries quantify genetic covariances between traits which may 25

be maintained by pleiotropic loci and linkage between loci 26

affecting different traits. The standard view is that drift 27

produces a proportional decrease in G (Phillips and McGuigan, 28

2006; Cano et al., 2004; McGuigan, 2006; Chapuis et al., 29

2008; Dugand et al., 2021; Mallard et al., 2023a), and thus 30

independent populations that have diverged due to drift should 31

have proportional G-matrices (Roff, 2000; Steppan et al., 32

2002; Aguirre et al., 2013). However, this insight rests on 33

results from a deterministic model for the response of G- 34

matrices to drift (Lande, 1979) and a model that assumes 35

recombination happens sufficiently fast to break-up linkage 36

produced by selection (Lande, 1980). Hence, there is a need 37

to develop theoretical predictions for the stochastic evolution 38

of G-matrices driven solely by drift, and especially for the effect 39

of drift on genetic covariances (Mallard et al., 2023a,b). 40

Corresponding author email: bweek@zoologie.uni-kiel.de

1

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 11, 2025. ; https://doi.org/10.1101/2025.06.07.658444doi: bioRxiv preprint 

https://doi.org/10.1101/2025.06.07.658444
http://creativecommons.org/licenses/by/4.0/


2 Bob Week

The reason for this gap in evolutionary theory stems, in part,41

from the lack of formal approaches to place tractable models42

of G-matrix evolution on a concrete mathematical foundation.43

In this paper, I aim to make first steps in this direction by44

leveraging the powerful theory of measure-valued processes,45

while also keeping the presentation as accessible as possible.46

Furthermore, taking this approach to formally derive G-matrix47

dynamics revealed a much broader framework for modelling48

a wide-range of population processes. In particular, given49

the growing appreciation for the interplay between ecological50

and evolutionary processes (Reznick, 2015; Hendry, 2017;51

Kuosmanen et al., 2022), this framework makes an important52

contribution by enabling the formal interfacing of G-matrix53

evolution with models of eco-evolutionary feedbacks (e.g., Patel54

et al., 2018). I therefore focus this paper on presenting the55

framework in its full generality, and return to the study of56

G-matrix evolution as an example to illustrate its utility.57

In its full generality, this framework offers tools to model the58

integrated ecological and evolutionary dynamics of populations59

with multivariate traits that respond to mutation, selection60

(including frequency and abundance dependence), demographic61

stochasticity, and consequential random genetic drift. In62

particular, this framework can be used to obtain generalizations63

of many classical models in evolution and ecology, such as such64

as Lotka-Volterra dynamics (Huang et al., 2015; Akjouj et al.,65

2024), coevolution (Gilman et al., 2012; Débarre et al., 2014),66

and evolutionary rescue (Klausmeier et al., 2020; Xu et al.,67

2023). Further details on how to apply this framework to arrive68

at known models are given in the discussion section.69

To apply this framework, the most important biological70

details relevant to a modeler are the mechanisms mediating71

fitness. In contrast, details involving the genetic architecture72

of traits are abstracted in a way that captures basic73

biological principles while optimizing analytical tractability.74

For instance, asexual, clonal reproduction is assumed and75

mutation is modeled following the approaches of Kimura76

(1965) and Débarre and Otto (2016) by assuming offspring77

traits are distributed around their parental traits. Abstract78

approaches similar to this have been successful for obtaining79

valuable analytical insights into genetic variation maintained by80

mutation-selection balance (Kimura, 1965; Lande, 1975; Turelli,81

1984, 1986) and by mutation-drift balance (Lande, 1976, 1979;82

Barton, 1989; Débarre and Otto, 2016). Hence, by optimizing a83

trade-off between genetic detail and analytical tractability, this84

framework provides an accessible approach for obtaining and85

communicating a wide array of novel theoretical insights.86

To establish this framework, I build on the work of Week et87

al. (2021), which presented a stochastic differential equation88

framework focused on modelling the simultaneous dynamics89

of abundances, 1-dimensional mean traits, and 1-dimensional90

trait variances responding to mutation, selection, demographic91

stochasticity, and random genetic drift. This 1-dimensional92

framework was based on the development of heuristics (i.e.,93

methods for performing exact calculations without formal94

justification) for working with stochastic partial differential95

equations (spde). However, for multivariate traits, the spde96

approach breaks down (Dawson, 1993; Etheridge, 2000; Perkins,97

2002). To overcome this challenge, and establish a rigorous98

analytical framework for deriving population processes, I take99

an approach based on so-called martingale problems (Dawson,100

1993; Stroock and Varadhan, 1997; Rogers and Williams,101

2000). Mathematical aspects of this approach are provided in102

supplement section 2. In the main text, I focus on the resulting103

dynamical equations and heuristics for performing calculations 104

with minimal technical background. 105

1.1. Overview 106

I begin by outlining the derivation of the deterministic version 107

of the framework without making any assumptions on the 108

shape of trait distributions, which is summarized by a system 109

of ordinary differential equations. This leads to expressions 110

of selection in terms of covariances with fitness, which I 111

refer to collectively as the Deterministic Covariance version 112

(or DC for short). By assuming traits follow multivariate 113

normal distributions, covariances with fitness are replaced by 114

multivariate gradients of fitness with respect to mean traits 115

and trait variances, and I refer to the resulting system of 116

differential equations as the Deterministic Gradient version (or 117

DG for short). To simplify presentation of the deterministic 118

version of the framework, I assume traits are perfectly heritable. 119

However, because this work is motivated by understanding the 120

consequences of drift for G-matrix evolution, I briefly describe 121

an approach to model imperfect heritability after introducing 122

DC and DG. This model of imperfect heritability is adopted 123

while introducing the stochastic extensions of the framework. 124

The stochastic extensions of the framework include the 125

effects of demographic stochasticity (i.e., random reproductive 126

output) and random genetic drift (which occurs here as 127

a consequence of demographic stochasticity). I introduce 128

two stochastic extensions. Both build on DG by assuming 129

multivariate normal trait distributions and by expressing 130

selection in terms of fitness gradients. The first form 131

expresses dynamics in terms of Brownian motions as drivers 132

of stochasticity (referred to as the Brownian Motion Gradient 133

version, or BG for short), which is particularly useful for 134

numerical analysis. The second form expresses dynamics in 135

terms of a more general underlying martingale process (referred 136

to as the Martingale Gradient version, or MG for short), 137

and I use this form to introduce heuristics for deriving 138

analytical models. To demonstrate these heuristics, I derive 139

a stochastic equation for the evolution of additive genetic 140

correlations between trait values. To bring this paper full-circle, 141

I then discuss how this exercise provides novel insights into 142

the evolutionary response of G-matrices to random genetic 143

drift and compare these theoretical results with observations 144

obtained from experiments (Phillips et al., 2001; McGuigan 145

et al., 2005; Whitlock et al., 2002). 146

Section 1 of the supplement translates discrete time models 147

of classical quantitative genetics into the current continuous 148

time context. Mathematical details to justify this framework are 149

communicated in supplement section 2. Using this justification, 150

section 3 of the supplement presents detailed calculations 151

for the derivation of the stochastic equations presented in 152

the main text. Supplement section 4 describes numerical 153

implementations of this framework. 154

2. The Framework 155

The framework tracks the dynamics of the density of abundance 156

across trait space for clonally reproducing populations. To 157

model d-dimensional traits, I assume trait space is the entire 158

Euclidean space Rd. Given the d-dimensional trait z = 159

(z1, . . . , zd)
⊤ (with ⊤ denoting matrix transposition so z is 160

a column vector), I write ν(z) for the density of abundance 161

at z, and I also refer to this as the abundance density of the 162

population. Then the total abundance of the population is given 163
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by n =
∫
Rd ν(z) dz. The frequency of trait value z is then164

p(z) = ν(z)/n, and this is also referred to both as the relative165

abundance of z and as the trait distribution. Using p(z), the166

mean trait vector is given by z̄ =
∫
Rd z p(z) dz, and the trait167

covariance matrix is P =
∫
Rd(z − z̄)(z − z̄)⊤p(z) dz, with Pij168

being the covariance between zi and zj . The chosen notation169

facilitates comparison with classical multivariate quantitative170

genetic models (Lande, 1980; Lande and Arnold, 1983; Jones171

et al., 2003; Arnold et al., 2008).172

In the following section (2.1) I describe how to obtain173

the deterministic version of the framework using multivariate174

calculus. I do this in two parts. The first part (DC )175

makes no assumption on the shape of p(z). The second part176

(DG) assumes p(z) is the density of a multivariate normal177

distribution. I continue to make this assumption in section 2.2178

where I introduce the stochastic extension of this framework.179

2.1. Deterministic Dynamics180

2.1.1. The Deterministic Covariance Version (DC)181

To establish a flexible, but tractable framework to model182

the dynamics of n, z̄, and P, I generalize the deterministic183

model used by Week et al. (2021), referred to there as the184

Deterministic Asexual Gaussian Allelic model (DAGA), to the185

multivariate setting. Specifically, DAGA focuses on dynamics186

due to just mutation and selection for asexually reproducing187

populations. Mutation is modeled as the variance µ of a188

normal distribution determining offspring traits centered on189

their parental traits, and selection results from the covariance190

of fitness and phenotype.191

In the multivariate trait setting, mutation is modeled as192

a d × d covariance matrix µµµ, with the off-diagonal entries193

contributing to trait covariances. This setup fits within the194

conceptual framework that has been popular for theoretical195

and empirical studies of G-matrix evolution, with µµµ taking196

the place of the M-matrix (Jones et al., 2007; Arnold et al.,197

2008; Mallard et al., 2023a). Fitness is quantified by a rate198

m(ν, z), which is the growth rate for the sub-population of199

individuals with trait value z in a population summarized by200

ν. The dependency of m on ν and z allows for the modelling201

of interwoven ecological and evolutionary dynamics. We will202

also refer to m(ν, z) as a fitness function, and this function203

may also depend on environmental parameters such as the204

trait values of individuals in interacting species. However, I205

omit notation accounting for such possibilities to simplify the206

frameworks presentation. Putting these components together,207

the multivariate generalization of DAGA is given by the partial208

differential equation209

ν̇(z) = m(ν, z) ν(z) + 1
2∇

⊤
µµµ∇ ν(z), (1)210

where ν̇(z) is the instantaneous rate of change of ν(z) over time,211

the symbol ∇ = (∂/∂z1, . . . , ∂/∂zd)
⊤ is the gradient operator212

with respect to the d-dimensional trait z, and213

1
2∇

⊤
µµµ∇ = 1

2

d∑
i,j=1

µij
∂

∂zi

∂

∂zj
(2)214

is the mutation operator. If µij = 0 when i ̸= j and µii = µjj215

is constant across all ij, then the above mutation operator216

becomes proportional to the Laplacian operator on Rd, which217

causes symmetric diffusion of the abundance density. Hence,218

unequal entries imply that mutation results in asymmetric219

diffusion across trait space so that some traits mutate faster220

than others. Additionally, if µij ̸= 0 when i ̸= j, mutation221

contributes to covariance between traits zi and zj . This 222

model of mutation can be obtained from a diffusion limit 223

of an individual-based model that assumes independence of 224

reproduction and mutation in which the phenotypic effect size 225

of mutation is small (Méléard and Roelly, 1993). A model 226

where mutation and reproduction interact has been studied by 227

Wickman et al. (2023). 228

Mathematically, assuming n is finite allows us to write ṅ = 229∫
Rd ν̇(z) dz. We can then apply integration-by-parts to obtain 230

ṅ = m̄ n, (3) 231

where m̄(ν) =
∫
Rd m(ν, z) p(z) dz is mean fitness. Biologically, 232

n should be very large since drift is being ignored. However, 233

this approach can still be useful for gaining insights when n 234

is small, which occurs for example with Lotka-Volterra models 235

(Akjouj et al., 2024). 236

Dynamics of the mean trait vector are obtained by applying 237

the quotient rule and integration-by-parts to ˙̄z =
∫
Rd z ṗ(z) dz, 238

which provides 239

˙̄z = Cov(m, z), (4) 240

where Cov(m, z) is a d-dimensional vector with i-th entry given 241

by 242

Cov(m, zi) =

∫
Rd

(m(ν, z) − m̄(ν) ) (zi − z̄i) p(z) dz, (5) 243

where z̄i is the i-th entry of z̄. 244

The same techniques can also be applied to obtain Ṗ as 245

Ṗ = µµµ+ Cov(m, (z − z̄)(z − z̄)
⊤
), (6) 246

where Cov(m, (z− z̄)(z− z̄)⊤) is a d×d matrix with ij-th entry 247

given by Cov(m, (zi − z̄i)(zj − z̄j)). 248

This version of the framework is especially flexible because 249

it makes no assumptions on the trait distribution. In this form, 250

the framework can then be used to study the dynamics of 251

populations with non-trivial higher moments, such as skewed 252

distributions. However, this flexibility of accommodating 253

general trait distributions comes at the cost of a limited range of 254

fitness functions that are amenable to study. This consequence 255

is due to i) the challenge of calculating covariances between 256

arbitrary fitness functions and phenotypic moments, and ii) 257

moment-closing issues that often arise during these calculations 258

(Barton and Turelli, 1987; Gilpin and Feldman, 2019; Guerand 259

et al., 2023). In spite of this limitation, a family of biologically 260

important fitness functions are tractable to study using DC. 261

These function take the form 262

m(ν, z) = r + b
⊤
z − 1

2 (θθθ − z)
⊤
Ψ (θθθ − z) − c n, (7) 263

where b = (b1, . . . , bd)
⊤ confers directional selection (positive 264

or negative for trait zi depending on the sign of bi), and Ψ 265

is a matrix that mediates stabilizing or disruptive selection 266

around the multivariate optimum θθθ (classically, Ψ is denoted 267

ωωω−1 in quantitative genetic theory e.g., Lande, 1979; Jones 268

et al., 2012). Additionally, the parameter c ≥ 0 is the 269

strength of competition, which here acts globally between 270

individuals regardless of trait, and r is the growth rate in the 271

absence of selection and competition (i.e., when b,Ψ, and c 272

are all zero). It is possible to generalize this family so that 273

competition is non-global, but this requires additional technical 274
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details as the fitness function becomes operator-valued (which275

is treated, for example, by Volpert, 2014; and by Etheridge276

et al., 2024). Supplementary material section 1 connects these277

fitness functions to those known from classical discrete time278

quantitative genetic models.279

Combining equations (3), (4), and (6) with equation (7)280

provides281

ṅ =
(
r+b

⊤
z̄− 1

2 (θθθ− z̄)
⊤
Ψ (θθθ− z̄)− 1

2 tr(ΨP)− c n
)
n, (8a)282

283
˙̄z = Pb + PΨ (θθθ − z̄) + K : Ψ, (8b)284

285

Ṗ = µµµ− PΨP + K · Ψ(θθθ − z̄) − K · b, (8c)286

where K is the third-order skew tensor of z defined by Kijk =287

E[(zi − z̄i)(zj − z̄j)(zk − z̄k)]. Products with K are given by288

(K : Ψ)i =
∑
jkKjkiΨjk, (K · Ψ)ij =

∑
kKijkΨkj , and (K ·289

b)ij =
∑
kKijkbk.290

Equations (8) demonstrate that, for fitness functions taking291

the form of (7), the dynamics of abundance, mean trait,292

and trait covariance matrix depend on higher phenotypic293

moments. In fact, a complete description requires an infinite294

number of equations. However, by combining equation (7) with295

multivariate DAGA (i.e., with equation (1)), we can use linear296

stability analysis to show that, when Ψ is positive definite, ν(z)297

has an asymptotically stable equilibrium proportional to the298

density of a multivariate normal distribution with covariance299

matrix P̂ =
√
µµµΨ−1 (with matrix square roots defined using300

eigenvalue decomposition: M = UΛU−1 implies
√
M =301

U
√
ΛU−1), equilibrium mean vector302

ˆ̄z = Ψ
−1

b + θθθ, (9)303

and total abundance304

n̂ =
1

c

(
r + b

⊤
θθθ + 1

2b
⊤
Ψ

−1
b − 1

2 tr
(√
µµµΨ

))
. (10)305

The mutation-selection balance of phenotypic variance P̂ is306

a multivariate generalization of the univariate classical result307

obtained from multi-locus models (e.g., Bulmer, 1972) and308

continuum-of-alleles models (e.g., Bürger, 1986). Further work309

is needed to extend these results for more general fitness310

functions and higher phenotypic moments, which are already311

known to have important evolutionary consequences (Débarre312

et al., 2015). A new approach to study the dynamics of higher313

moments for univariate traits was recently introduced by Gilpin314

and Feldman (2019).315

2.1.2. The Deterministic Gradient Version (DG)316

As noted above, deriving population dynamics from arbitrary317

fitness functions can be challenging in the more general318

framework based on covariances between fitness and phenotype.319

To overcome this we can make the useful simplifying320

assumption that traits follow a multivariate normal distribution.321

While deviations from normality can have consequences for322

ecological and evolutionary processes (Turelli, 1988; Débarre323

et al., 2015), normality has been an important initial324

assumption for studying a wide range of topics such as reaction-325

norm evolution (Lande, 2014), coevolving mutualistic networks326

(Nuismer et al., 2018), and niche construction (Fogarty and327

Wade, 2022). Furthermore, normality is a well-established328

approximation that holds under many genetic and selective329

scenarios (Turelli and Barton, 1994). Then, as a first pass, I330

assume traits are multivariate normally distributed for the rest331

of this paper.332

In the context of this framework, the assumption of 333

multivariate normality is particularly useful because it allows 334

us to rewrite covariances between fitness and phenotype as 335

gradients of fitness functions with respect to moments of the 336

trait distribution. Such gradients can be analytically calculated 337

for a broad range of fitness functions. The calculations to obtain 338

these expressions begin with the definitions of covariances 339

between fitness and phenotype, and then apply properties of the 340

multivariate Gaussian function and integration-by-parts. As a 341

result, the deterministic DG version of the framework is given 342

by 343

ṅ = m̄ n, (11a) 344

345

˙̄z = P (∇z̄ m̄− ∇z̄m), (11b) 346

347

Ṗ = µµµ+ 2P (∇P m̄− ∇Pm)P, (11c) 348

where ∇z̄ m̄ and ∇z̄m are d-dimensional vectors that 349

respectively capture the effects of frequency independent and 350

frequency dependent selection on mean trait evolution. More 351

precisely, writing ∂i = ∂/∂z̄i as the partial derivative operator 352

with respect to the i-th mean trait, the i-th entry of ∇z̄ m̄ 353

and ∇z̄ m are respectively given by ∂i m̄ and ∇z̄ m is ∂im = 354∫
Rd p(z) [ ∂im(ν, z) ] dz. Similarly, ∇P m̄ and ∇Pm are d × d 355

matrices that respectively quantify the dependence of fitness 356

on trait variances and covariances. Writing ∂ij = ∂/∂Pij as 357

the partial derivative operator with respect to the covariance 358

between trait components i and j, the ij-th entries of ∇P m̄ 359

and ∇Pm are respectively given by ∂ij m̄ and ∂ijm = 360∫
Rd p(z) [ ∂ijm(ν, z) ] dz. 361

Mean trait and trait covariance dynamics can be expressed 362

in index form as 363

˙̄zi =
d∑
j=1

Pij (∂j m̄− ∂jm), (12a) 364

365

Ṗij = µij + 2
d∑

k,l=1

Pik (∂kl m̄− ∂klm)Plj . (12b) 366

Inclusion of the terms ∇z̄m and ∇Pm in equations (11b) and 367

(11c) make it clear that this framework accounts for frequency- 368

dependent selection. This is similar to the form of frequency- 369

dependent selection that appears in classical quantitative 370

genetics (see eqn. (9) of Lande, 1976). Additionally, the 371

approach outlined here can make a useful alternative to 372

model frequency-dependent selection complementing adaptive 373

dynamic and evolutionary game theoretic methods (Dieckmann 374

and Law, 1996; Hofbauer and Sigmund, 1998; Traulsen et al., 375

2005). 376

An important caveat of both DC and DG versions of the 377

framework taking the form presented above is that they rely on 378

perfect heritability of trait values. However, traits are in general 379

not perfectly heritable, and this is of fundamental importance 380

in evolutionary biology. I therefore address this additional 381

complexity in the following sub-subsection. I note here that 382

extending DC and DG to include imperfect heritability results 383

in nearly identical equations, the important difference is that 384

average growth rates must additionally be averaged over a 385

phenotypic noise term. I state this explicitly for the DG version 386

below. 387

2.1.3. Imperfect Inheritance 388

Following classical quantitative genetics, imperfect inheritance 389

of trait values can be accounted for by assuming traits 390
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decompose into a genetic component and a noise component:391

zi = gi + ei (Lynch et al., 1998). The noise component ei is392

assumed to be independent for each trait and each individual,393

and thus not heritable. In contrast, the genetic component394

(gi) follows the same Gaussian mutation model describe above.395

In particular, focusing on a d-dimensional trait, given that396

g = (g1, . . . , gd) is the vector of genetic components for the397

trait of a parent, an offspring will have a genetic component398

vector that is multivariate normally distributed with mean399

g and covariance matrix µµµ. Assuming the noise component400

is identically distributed for all individuals with mean zero401

and covariance matrix E, and denoting γ(g) the density of402

abundance at genetic value g, and ε(e) the frequency of noise403

terms, the abundance density of trait values is given by ν(z) =404 ∫
Rd ε(e)γ(z− e)de. This preserves total abundance so that n =405 ∫
Rd ν(z)dz =

∫
Rd γ(g)dg. These assumptions also imply that406

the growth rate for the sub-population of individuals carrying407

genetic value g is given by m∗(γ, g) =
∫
Rd ε(e)m(ν, g + e)de.408

Furthermore, the fitness function for trait values m(ν, z) and409

the fitness function for genetic values m∗(γ, g) have the same410

mean value across the population411

m̄∗ =
1

n

∫
Rd
m∗(γ, g) γ(g) dg412

=
1

n

∫
Rd

∫
Rd
m(ν, z) ε(e) γ(z − e) de dz413

=
1

n

∫
Rd
m(ν, z) ν(z) dz = m̄. (13)414

The dynamics of γ are given in analogy to ν̇ as415

γ̇(g) = m∗(γ, g) γ(g) +
1
2∇

⊤
µµµ∇ γ(g). (14)416

The frequency of g in the population is given by ϱ(g) = γ(g)/n.417

In combination with the model for phenotypic noise, the mean418

trait vector is calculated as z̄ = ḡ and the trait covariance419

matrix is P = G + E. To simplify calculating fitness, and to420

accommodate the assumption of multivariate normal traits, I421

assume ε(e) is the density of a multivariate normal distribution422

(with mean zero and covariance matrix E).423

Under these assumptions the expression for abundance424

dynamics does not change, but the mean trait dynamics can425

be calculated as426

˙̄z = G (∇z̄ m̄− ∇z̄m), (15)427

and G-matrix dynamics are given by428

Ġ = µµµ+ 2G (∇G m̄− ∇Gm)G. (16)429

I apply this model of imperfect inheritance while describing430

the stochastic extensions of the framework below. Further431

details about how imperfect inheritance is interfaced with the432

formal details of the stochastic extension are provided in the433

supplement section 3.434

2.2. Stochastic Dynamics435

In this section, I present an extension of the framework to the436

case where demographic stochasticity induces random genetic437

drift. This extension comes in two variants, and both build on438

the deterministic DG version of the framework above.439

The first variant, called BG, expresses stochastic dynamics440

with respect to Brownian motion processes, as is standard441

for stochastic differential equations (Øksendal, 2003; Evans, 442

2012). BG is particularly useful for numerical applications, 443

and can be implemented using the Euler-Maruyama algorithm 444

(Bayram et al., 2018). I illustrate this during a brief 445

study of genetic correlations evolving in response to 446

random genetic drift. Further information is provided in 447

supplement 4. Implementations of this approach using the 448

DifferentialEquations.jl package in Julia (Rackauckas and Nie, 449

2017), and a manual implementation are provided at the github 450

repository github.com/bobweek/multi-mtgl. 451

The second variant, called MG, is useful for deriving the 452

dynamics of more specific quantities. This use-case is illustrated 453

below to formally obtain a stochastic differential equation 454

tracking the evolution of genetic correlations in response to 455

random genetic drift. To do so, I introduce a powerful set of 456

novel heuristics (i.e., methods for performing exact calculations 457

without formal justification) that can be used to derive an 458

array of models from this variant of the framework. These 459

heuristics are obtained by examining a so-called martingale 460

process underlying this entire framework, which is also the 461

namesake of MG. Mathematical details are provided in section 462

2 of the supplement. 463

Both stochastic extensions of the framework include an 464

additional variable v, which is associated with the variance 465

of lifetime reproductive output of individuals (Week et al., 466

2021). Previous work has shown that a novel form of selection 467

can emerge when v depends on trait value, referred to as 468

noise-induced selection, and for which evolutionary responses 469

behave radically different from classical deterministic selection 470

(Constable et al., 2016; Parsons et al., 2010; Kuosmanen 471

et al., 2022; Bhat and Guttal, 2025). However, accounting 472

for noise-induced selection leads to significantly more complex 473

expressions for the evolution of mean trait vector and trait 474

covariance matrix (e.g., see Week et al., 2021, for the univariate 475

case). Furthermore, the importance of noise-induced selection 476

has not been empirically established. Then, as a first pass, I 477

keep the expressions relatively simple by assuming v is constant 478

across trait values. 479

2.2.1. The Brownian Motion Gradient Version (BG) 480

Accounting for the effects of demographic stochasticity, the 481

abundance dynamics can now be expressed as the following 482

stochastic differential equation 483

dn = m̄ n dt+
√
v n dBn, (17) 484

where the noise process Bn is a standard Brownian motion 485

(i.e., Bn(t) has variance equal to t and Bn(0) = 0). Assuming 486

multivariate normality, and the above model of imperfect 487

inheritance, the mean trait dynamics are given by 488

dz̄ = G (∇z̄ m̄− ∇z̄m) dt+

√
v

n
G dBz̄, (18) 489

with Bz̄ a d-dimensional vector of independent standard 490

Brownian motions. Equation (18) provides a continuous-time 491

extension to the framework of multivariate evolution introduced 492

by Lande (1979). Alternatively, the stochastic dynamics of 493

mean traits can be expressed using index notation as 494

dz̄i =
d∑
j=1

Gij (∂j m̄+ ∂jm) dt+

√
v

n
Gii dBz̄i , (19) 495

where ∂i = ∂/∂z̄i and, for each i, Bz̄i is a standard Brownian 496

motion and non-independence for each ij is encoded by the 497
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6 Bob Week

heuristic dBz̄i dBz̄j = ρij dt, with ρij = Gij/
√
GiiGjj the498

genetic correlation between traits i and j. This heuristic is499

particularly useful when applying Itô’s formula (the stochastic500

analog of the chain rule, see Øksendal, 2003; Evans, 2012)501

to derive dynamics for functions of mean trait values. This502

approach may be used, for example, to track the dynamics of503

interaction coefficients for coevolving species as a multivariate504

generalization of the approach taken by Week and Nuismer505

(2021).506

In equation (18) the correlated effects of genetic drift on507

mean trait evolution are encoded by the product
√
GdBz̄. In508

contrast, for equation (19), these correlated effects are encoded509

directly by the non-independence of the Brownian motions510

Bz̄1
, . . . , Bz̄d . In particular, the i-th entry of dBz̄ is not equal511

to dBz̄i because (dBz̄)i (dBz̄)j = δij dt, where δij = 1 when512

i = j and zero otherwise. These heuristics work in the absence513

of multivariate normality, but the deterministic component of514

dz̄ expressed above does depend on multivariate normality.515

The application of the multivariate normal approximation516

to the stochastic dynamics of the G-matrix leads to the matrix517

equation518

dG =

(
µµµ+ 2G (∇G m̄− ∇Gm)G −

v

n
G

)
dt+

√
v

n
Γ : dBG,

(20)519

where Γ is a fourth-order tensor describing the covariance520

structure for the response of G to drift. Defining products521

of fourth-order tensors X and Y by (X : Y)ijkl =522 ∑
mnXijmnYmnkl, we can write Γ =

√
Γ :

√
Γ. Furthermore,523

we have
√
Γijkl =

(√
Gik

√
Gjl +

√
Gil

√
Gjk

)
/
√
2, and

√
Gij524

is the ij-th entry of
√
G which is not equal to

√
Gij . Matrix525

square roots are defined using the eigenvalue decomposition526

(given G = UΛU−1 then
√
G = U

√
ΛU−1).527

The product
√
Γ : dBG returns a d × d matrix with ij-528

th entry (
√
Γ : dBG)ij =

∑
kl

√
Γijkl (dBG)kl. The d × d529

matrix-valued Brownian motion BG has independent standard530

Brownian motions along its diagonal entries. The off-diagonal531

entries are standard Brownian motions scaled by one-half (i.e.,532

the variance of (BG)ij(t) is t/2 when i ̸= j), and symmetric533

entries are equivalent so that (BG)ij = (BG)ji. The covariance534

structure of BG is summarized by the heuristic535

(dBG)ij (dBG)kl =
δikδjl + δilδjk

2
dt. (21)536

Scaling the off-diagonals by one-half ensures variances and537

covariances are correctly propagated while calculating the538

stochastic consequences of drift for G-matrix dynamics. Further539

information on symmetric normal matrices can be found in540

Gupta and Nagar (2018), particularly theorem 2.5.1.541

Unlike the expression for the stochastic component of dz̄, the542

stochastic component for dG does depend on the assumption543

of a multivariate normal trait distribution.544

Using index notation, the expression (20) simplifies to a545

d(d+ 1)/2-dimensional system of equations summarized by546

dGij =

(
µij + 2

∑
kl

Gik (∂kl m̄− ∂klm)Glj −
v

n
Gij

)
dt547

+

√
v

n

√
GiiGjj +G2

ij dBGij
, (22)548

for 1 ≤ i ≤ j ≤ d where ∂ij = ∂/∂Gij and for each ij we549

have BGij
is a standard Brownian motion with BGij

= BGji
.550

Importantly, note that dBGij
is not the ij-th entry of dBG. 551

This is made clear by the heuristic 552

dBGij
dBGkl

=
Gik Gjl +GilGjk√

(GiiGjj +G2
ij) (Gkk Gll +G2

kl)
dt. (23) 553

Finally, the noise process driving abundance in general does not 554

covary with the noise processes driving mean traits and trait 555

covariances (i.e., dBn dBz̄i = dBn dBGkl
= 0), and, under the 556

assumption of multivariate normality, the same holds for trait 557

means and trait covariances (i.e., dBz̄i dBGkl
= 0). This agrees 558

with the off-diagonal entries in equation (8b) of Barton (1989), 559

but my results for the diagonal entries disagree. See supplement 560

section 3 for more details. 561

The vector-matrix expression of BG (equations (18) and 562

(20)) is particularly well-suited for numerical exploration of 563

models because the covariance structure of the noise processes 564

associated with random genetic drift are written explicitly in 565

terms of sums involving the entries of the matrix square root 566√
G. Hence, this version of the framework is easily interfaced 567

with a common algorithm to numerically integrate systems of 568

stochastic differential equations, the Euler-Maruyama method 569

(Bayram et al., 2018). The numerical benefits of the BG version 570

of the framework are highlighted in section 3 below to study 571

G-matrix evolution. 572

The expression of BG in index notation (equations 19 and 573

22), while arguably more complex in appearance, are useful 574

for deriving analytical results, and especially when applying 575

Itô’s formula (a stochastic generalization of the chain-rule 576

from calculus, see section 2.2 of the supplement) to derive 577

the dynamics of a quantity depending on z̄ and/or G (such 578

as the dynamics of growth rate, dm̄, for instance). However, 579

there are limitations with this application of BG, particularly 580

for dealing with sums of stochastic differentials such as U = 581

a dBGij
+b dBGkl

. If the Brownian motions BGij
and BGkl

were 582

independent, then we can write U =
√
a2 + b2dB with B being 583

another standard Brownian motion. Because BGij
and BGkl

are 584

not independent, which is captured by equation (23) above, it 585

is not obvious how to properly express U in terms of a, b and a 586

single standard Brownian motion B. 587

To overcome these challenges, and also to simplify typical 588

calculations, it is useful to rewrite the stochastic components 589

of equations (19) and (22) in terms of an underlying stochastic 590

process M. Because M satisfies a martingale property (roughly, 591

this means E[M(t + s) |M(t) ] = M(t) for all s > 0), I refer 592

to this version of the framework as the Martingale Gradient 593

version (or MG for short). In the following sub-section, I 594

present this version of the framework in a way that minimizes 595

technical pre-requisites, while maintaining the same scope as 596

equations (19) and (22) above. Additionally, heuristics are 597

offered for making calculations, and these are demonstrated 598

by deriving a stochastic differential equation for the correlation 599

between two traits driven purely by random genetic drift. 600

2.2.2. The Martingale Gradient Version (MG) 601

In supplement section 2, I show that this framework is justified 602

based on a martingale process M. Brownian motion is a special 603

case of a martingale process, and stochastic equations are often 604

expressed in terms of a Brownian stochastic differential dB. 605

However, in this framework, stochastic equations can also be 606

expressed in terms of the stochastic differential with respect 607

to M, denoted by dM. This establishes a powerful approach 608

for deriving fundamental insights into evolutionary processes. 609

Further mathematical details are provided in supplement 610
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sections 2 and 3, but here I focus on pragmatic aspects611

regarding calculations that involve dM.612

I begin by artificially defining symbols related to dM613

in terms of the Brownian motions that appear in equations614

(17), (18), and (20), and use these definitions to express the615

framework in terms of dM. This is done purely for the sake616

of motivating the material that follows. After this, I introduce617

some properties of dM and show how these can be used to618

recover the Brownian motions initially used in the artificial619

definitions mentioned above. I then provide general heuristics620

for working with dM and illustrate these heuristics by deriving621

the response of trait correlations to random genetic drift.622

For now, define the symbols dM(1), dM(gi − ḡi) and623

dM
(
(gi − ḡi)(gj − ḡj) −Gij

)
as follows:624

dM(1) :=
√
v n dBn, (24a)625

626

dM(gi − ḡi) :=
√
v nGii dBz̄i , (24b)627

628

dM
(
(gi − ḡi)(gj − ḡj) −Gij

)
:=

√
v n

√
GiiGjj +G2

ij dBGij
.

(24c)629

Using this notation, the MG version of the framework can be630

written as631

dn = m̄ n dt+ dM(1), (25a)632

633

dz̄i =
d∑
j=1

Gij (∂j m̄+ ∂jm) dt+
1

n
dM(gi − ḡi), (25b)634

635

dGij =

(
µij + 2

∑
kl

Gik (∂kl m̄− ∂klm)Glj −
v

n
Gij

)
dt636

+
1

n
dM

(
(gi − ḡi)(gj − ḡj) −Gij

)
, (25c)637

where recall that ∂i = ∂/∂z̄i and ∂ij = ∂/∂Gij .638

The covariance structure of the system is maintained639

through heuristics for computing products of the above640

stochastic differentials dM(x). To understand these heuristics,641

I introduce some useful notation for keeping track of averages642

across the distribution of traits in the population. Specifically,643

for functions x(g) and y(g), I define the symbols ∥ x ∥ and644

⟨ x, y ⟩ as follows:645

∥ x ∥ =
√
v n
√
x2 =

√
v n

√∫
Rd
x2(g) ϱ(g) dg, (26a)646

647

⟨ x, y ⟩ = v n x y = v n

∫
Rd
x(g) y(g) ϱ(g) dg, (26b)648

where ϱ(g) = γ(g)/n is the distribution of additive genetic649

values g in the population (assumed to be multivariate650

normal). To provide a few examples, one can calculate ∥1∥ =651

√
v n

√∫
12 ϱ(g) dg =

√
v n along with652

∥gi − ḡi∥ =
√
v n

√∫
Rd

(gi − ḡi)2 ϱ(g) dg =
√
v nGii, (27a)653

654

⟨ gi− ḡi, gj − ḡj ⟩ = v n

∫
Rd

(gi− ḡi) (gj − ḡj) ϱ(g) dg = v nGij .

(27b)655

The martingale process M mentioned above can be thought656

of as a mapping that associates functions with stochastic657

processes. This idea is made precise in section 2 of the658

supplement. What is relevant here is that, by setting x̂(g) =659

x(g) / ∥ x ∥, the stochastic differential dM(x̂) is formally 660

equivalent to the stochastic differential of a standard Brownian 661

motion (such as dBn, for example). Furthermore, from 662

supplement section 2.2 we have the scaling property: 663

dM(x)

∥ x ∥
= dM

(
x

∥ x ∥

)
. (28) 664

Using this heuristic, we can calculate 665

dM(1) = ∥1∥ dM
(

1

∥1∥

)
=

√
v n dM(1̂), (29a) 666

667

dM(gi−ḡi) = ∥gi−ḡi∥ dM
(

(gi − ḡi)

∥gi − ḡi∥

)
=
√
v nGii dM(ĝi − ḡi).

(29b) 668

Comparing with equations (17) and (18), these calculations 669

highlight the fact that dBn = dM(1̂) and dBz̄i = dM(ĝi − ḡi). 670

A similar equality holds for dBGij
, but for the sake of brevity 671

this expression is omitted. 672

Informally speaking, this scaling property allows us to 673

“factor out” the standard deviation from the noise process 674

driving the dynamics of a univariate function of the population 675

(such as n, z̄i, or Gij), and to replace that noise process 676

with the product of the resulting standard deviation with 677

a standard Brownian motion. This is the crucial step for 678

obtaining equations (17), (19), and (22) from the underlying 679

martingale process M, as detailed in supplement section 3 680

where these heuristics are applied to derive MG and BG. 681

Just as Bz̄i and Bz̄j have a covariance encoded by the 682

heuristic dBz̄i dBz̄j =
(
Gij /

√
GiiGjj

)
dt, the processes M(x) 683

and M(y) will also covary following a more general heuristic. 684

More precisely, for functions x, y, we have the multiplicative 685

property: 686

dM(x) dM(y) = ⟨ x, y ⟩ dt, (30) 687

where ⟨ x, x ⟩ = ∥ x ∥2. In addition, we have dt2 = 0 688

and dt dM(x) = dM(x) dt = 0 for any function x, which 689

are common heuristics in standard approaches to stochastic 690

differential equations (Øksendal, 2003; Evans, 2012). 691

Finally, we also have the additive property: dM(a x+b y) = 692

a dM(x) + b dM(y), for functions x, y and constants a, b. 693

This property is particularly useful for computing the correct 694

stochastic term for an equation resulting from the application 695

of Itô’s formula, as illustrated below. 696

With these heuristics, it is straightforward to work with 697

the MG version of the framework presented by equations (25) 698

to rigorously obtain the dynamics of quantities related to 699

the population. For instance, these heuristics may be used 700

to formally derive a stochastic differential equation for the 701

evolution of genetic correlations in response to drift. Indeed, 702

I do this now. 703

3. Genetic Correlations and G-matrix Dynamics 704

In the following sub-section I illustrate how to apply the above 705

framework to obtain new models of evolutionary phenomena. 706

Specifically, I apply the heuristics introduced in the MG version 707

of the framework to derive the dynamics of genetic correlations 708

responding only to random genetic drift. Using this derivation, 709

I then provide biological insights into the consequences of drift 710

for genetic correlations in a clonally reproducing populations. 711

In section 3.2, I then discuss the significance of these results in 712

the context of empirical research on G-matrix dynamics. 713
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3.1. Consequences of Drift for Trait Correlations714

The additive genetic correlation between traits zi and zj is715

given by ρij = Gij /
√
GiiGjj . For this sub-section, I focus on716

the single correlation between zi and zj , and simply write this717

as ρ. To focus on the effects of random genetic drift, and for the718

sake of simplicity, I ignore mutation, selection, and abundance719

dynamics in this analysis.720

Because we have the stochastic equations for dGij , dGii,721

and dGjj (equation 25c), and because ρ can be thought of as a722

function ρ(Gij , Gii, Gjj) = Gij /
√
GiiGjj , we can apply Itô’s723

formula, which, in this context, states the following stochastic724

analog of the chain-rule: dρ = K + L, with K = (∂ijρ) dGij +725

(∂iiρ) dGii + (∂jjρ) dGjj and726

L = 1
2

[
(∂

2
ijρ) (dGij)

2
+ (∂

2
iiρ) (dGii)

2
+ (∂

2
jjρ) (dGjj)

2
]

727

+ (∂ij ∂iiρ) (dGij) (dGii) + (∂ij ∂jjρ) (dGij) (dGjj)728

+ (∂ii ∂jjρ) (dGii) (dGjj), (31)729

where ∂ijρ is the partial derivative of ρ with respect to Gij .730

With this formula in hand, all that is left is to carry out731

calculations based on the heuristics from the MG version of the732

framework. First off, we can directly compute the deterministic733

component of the sumK and find that this cancels to zero. This734

part of the calculation does not require the heuristics for dM735

introduced above. However, by leveraging the additive property736

of dM, the stochastic component of K can be rewritten as737

1
n (∂ijρ) dM

(
(gi − ḡi)(gj − ḡj) −Gij

)
738

+ 1
n (∂iiρ) dM

(
(gi − ḡi)(gi − ḡi) −Gii

)
739

+ 1
n (∂jjρ) dM

(
(gj − ḡj)(gj − ḡj) −Gjj

)
740

= 1
n dM

(
(∂ijρ)

(
(gi − ḡi)(gj − ḡj) −Gij

)
741

+ (∂iiρ)
(
(gi − ḡi)(gi − ḡi) −Gii

)
742

+ (∂jjρ)
(
(gj − ḡj)(gj − ḡj) −Gjj

))
. (32)743

Writing the argument to dM on the right-hand-side of744

equation (32) as Hij , the stochastic component of K becomes745

1
n∥Hij∥dM(Ĥij), (33)746

where Ĥij = Hij/∥Hij∥. Calculation of ∥Hij∥ only requires747

computation of the first order derivatives ∂ijρ, ∂iiρ, ∂jjρ and748

the fact from multivariate normal distributions that749

∫
Rd

(gi − ḡi)(gj − ḡj)(gk − ḡk)(gl − ḡl)ϱ(g)dg750

= GijGkl +GikGjl +GilGjk. (34)751

Working through these calculations provides752

K =

√
v

n
(1 − ρ

2
)dBρ, (35)753

where dBρ = dM(Ĥij) is a scalar-valued standard Brownian754

motion.755

To compute L, I first rewrite the product (dGij) (dGkl)756

using the notation introduced in the MG version of the757

framework above, which provides758

(dGij) (dGkl) = 1
n2 dM

[
(gi − ḡi)(gj − ḡj) −Gij

]
759

× dM
[
(gk − ḡk)(gl − ḡl) −Gkl

]
. (33) 760

Applying the heuristics for dM, the product simplifies to 761

(dGij) (dGkl) = 1
n2

[ 〈
(gi − ḡi)(gj − ḡj), (gk − ḡk)(gl − ḡl)

〉
762

− v nGij Gkl
]
dt, (34) 763

where I made use of ⟨ (gi − ḡi)(gj − ḡj), Gkl ⟩ = v nGij Gkl. 764

Again applying property (34) from above, I obtain the further 765

simplification (dGij) (dGkl) = v
n (GikGjl+GilGjk). Interfacing 766

this result with derivatives of f, I arrive at 767

L = −
1

2

v

n
ρ (1 − ρ

2
) dt. (36) 768

Hence, by applying the MG version of the framework, I 769

find that trait correlations driven entirely by drift follow the 770

ordinary stochastic differential equation 771

dρ = −
1

2

v

n
ρ(1 − ρ

2
)dt+

√
v

n
(1 − ρ

2
)dBρ. (37) 772

Equation (37) shows that the effect of drift is mediated 773

by the ratio of the variance of lifetime reproductive output 774

v (typically set to v = 1 in classical quantitative genetic 775

models such as Lande, 1976) to the effective population 776

size n. Additionally, one can check that (because mutation 777

and selection are absent) ρ = ±1 are stationary points. 778

Furthermore, leveraging the fact that equation (37) defines 779

a one-dimensional diffusion, we can in principle solve for 780

its stationary distribution q̂(ρ) (Karlin and Taylor, 1981; 781

Etheridge, 2010). However, in attempt to do so we arrive at 782

the non-integrable function: 783

q̂(ρ) ∝
1

(1 − ρ2)3/2
. (38) 784

The lack of a formal stationary distribution creates a 785

challenge for understanding the limiting behavior of genetic 786

correlations evolving solely in response to drift. This can be 787

partially overcome by again leveraging the theory of one- 788

dimensional diffusions to demonstrate that the boundaries ±1 789

are both attracting and unattainable (Karlin and Taylor, 1981). 790

That is, genetic correlations tend towards their extremes, but 791

never fix at ±1. This is visualized in Figure 1 by plotting the 792

distribution q(ρ) of genetic correlations as numerical solutions 793

to the forwards Kolmogorov (i.e., Fokker-Planck) equation 794

associated with (37). Biologically, |ρ| increases because drift 795

randomly samples finite numbers of individuals, thereby 796

causing spurious correlations among the additive genetic values 797

these individuals carry. Further biological implications are 798

discussed in the following section. 799

Another way to view this result is by applying Itô’s formula 800

to u = tanh(ρ). Doing so returns 801

du =
1

2

v

n
tanh(u)dt+

√
v

n
dBu. (39) 802

Because ρ = tanh−1(u) is a monotone increasing function 803

of u, statements about u map directly to ρ. In particular, 804

u = ρ = 0 is unstable because tanh(u) is positive for positive 805

u, and negative for negative u. Additionally, if u is much 806

greater than 1, then du ≈ v dt/2n +
√
v/n dBu and, writing 807
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Multivariate Eco-Evo 9

Fig. 1. The distribution of genetic correlations evolving under drift alone converges to a non-integrable stationary solution. Shown here are dynamics

for initial distributions taking approximate point masses at ρ0 = −0.5 (left panel), ρ0 = 0.0 (middle panel), and ρ0 = 0.5 (right panel). Solutions at

earlier times are colored green, and later times are purple which run until t = 2000. The rate of drift is set to v/n = 0.001.

this point as u0, we have E[ut] ≈ u0 + v t/2n. The analogous808

approximation holds when u is much less than −1. This agrees809

with the boundary classification result above that demonstrates810

drift has an overall tendency to drive trait correlations towards811

±1. Numerical estimates for sample paths of the solution to812

(37), illustrated by Figure 2, support this conclusion.813

Fig. 2. Drift drives trait correlations towards ±1. Shown here are five

replicates illustrating the path-behavior of trait correlations following

equation (37). Each replicate is initiated with ρ0 = 0 and the rate of

drift is set to v/n = 0.001.

To confirm the heuristics return correct expressions, I also814

simulated the evolution of the G-matrix driven solely by815

random genetic drift for a 2-dimensional trait by applying816

the Euler-Maruyama method (Bayram et al., 2018) to the817

BG version of the framework. I then back-calculated the818

genetic correlation ρ based on the simulated time-series of819

G. Figure 1 in the supplement demonstrates this approach820

agrees with equation (37). Further information on the821

numerical implementation is given in supplement section 4,822

and associated code is available at the github repository823

github.com/bobweek/multi-mtgl.824

3.2. Evolution of The G-Matrix in Response to Drift 825

The above result demonstrates that drift increases correlations 826

between traits, especially for clonally reproducing populations 827

where recombination is absent. This perspective offers an 828

important refinement of the conventional wisdom that G- 829

matrices responding to drift should merely scale in size (Lande, 830

1979; Phillips and McGuigan, 2006; Dugand et al., 2021; 831

Mallard et al., 2023a). In particular, it is classically thought 832

that the orientation of the G-matrix should not change due to 833

drift on average, and hence any changes in orientation may be 834

a sign of selection (Roff, 2000; Steppan et al., 2002; Cano et al., 835

2004; Chapuis et al., 2008; Aguirre et al., 2013). 836

This idea can be obtained from equation (20) if the 837

stochastic component is neglected. Then, the deterministic 838

response due to drift is described by Ġ = −vG/n, which 839

has the solution Gt = G0e
−v t/n, and is a continuous-time 840

equivalent of the result found by Lande (1979). Numerical 841

results displayed in Figure 2 of the supplement indicate 842

agreement with this classical scaling result. However, when 843

stochastic outcomes are highly variable, the average response 844

to drift may provide little information for within-population 845

dynamics. 846

Taking an experimental approach, Phillips et al. (2001) 847

established isolated populations of Drosophila melanogaster 848

from a common base population and found significant variation 849

across replicates for the response of G to drift. This occurs 850

in spite of the fact that Drosophila melanogaster is a 851

sexually reproducing organism, and recombination should 852

act to break up correlations caused by linkage (discussed 853

further below) and thereby reduce variation across replicates. 854

Figure 3 emphasizes these variable outcomes theoretically by 855

superimposing expected trait correlations over a collection 856

of individual outcomes. The expected correlations are 857

approximated by averaging over replicates, but it took a very 858

large number of replicates (>1000) to obtain a satisfactory 859

deterministic trend. The averages shift towards zero, but we 860

can see individual replicates are not predicted by this trend. 861

Hence, to gain a more accurate picture of G-matrix evolution, 862

there is a need to understand the path behavior of individual 863

outcomes. 864

One approach to gain insight for the trait correlation of a 865

given replicate, as opposed to the average, is to analyze the 866
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Fig. 3. Averages over replicated time-series of trait correlation do not predict within population trait correlations. Averages were computed using 3000

replicates with initial correlations ρ0 = −0.9 (top-left), ρ0 = −0.5 (top-right), ρ0 = 0.3 (bottom-left), and ρ0 = 0.8 (bottom-right). For the sake of

clarity, just 20 random replicates are shown behind the average trends.

proportion of time that correlations spend near ±1 over the867

total time the process is running. Figure 4 plots the proportion868

of time that a correlation spends either in the range 0.95 <869

ρ < 1.0 or in −1.0 < ρ < −0.95 averaged over 100 replicates870

with initial value ρ0 = 0 and v/n = 0.001. This result shows871

that trait correlations typically aggregate near ±1 in drifting,872

isolated, asexual populations with no mutational input. Hence,873

interpreting this as a signature of drift, we can say that if trait874

correlations in a population exhibit significant variation away875

from ±1, then either the population has been drifting for only876

a short time relative to its effective population size, or other877

processes not captured by this model must be at play such as878

mutation and recombination. I therefore discuss mechanisms879

maintaining genetic correlations before concluding this section.880

Pleiotropic loci and genetic linkage are two mechanisms881

that maintain genetic correlations (Lande, 1980). In this882

framework, pleiotropic mutations would arise from non-zero883

off-diagonals of the mutation matrix µµµ. In contrast, drift884

facilitates chance correlations of additive genetic values between885

traits across individuals. Hence, this second mode of genetic886

correlation accumulation is directly analogous to the build-887

up of linkage by drift (Hill and Robertson, 1966; Ohta and888

Kimura, 1969; Lucek and Willi, 2021). For sexually reproducing889

populations, it is expected that genetic correlations should890

be maintained by pleiotropic loci as recombination breaks up891

linkage (Lande, 1980; Jones et al., 2003; Phillips and McGuigan,892

2006). However, the results in this section suggest that, because893

Fig. 4. Trait correlations (ρ) within populations rapidly evolve towards

±1 under random genetic drift, as show here by the proportion of time

that |ρ| > 0.95 averaged over 10 replicates, given ρ0 = 0 and v/n = 0.001.

drift drives correlations towards ±1, and recombination drives 894

them towards zero, these two forces should interact to maintain 895

genetic linkage in agreement with classical population genetic 896

theory (Ohta and Kimura, 1969). 897

An extension of this framework that formally integrates 898

sexual reproduction would be useful for making quantitative 899
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predictions for genetic correlations maintained at drift-900

recombination balance. However, as is, the above analysis shows901

that conventional perspectives on G-matrix evolution deserve902

closer examination.903

4. Discussion904

The classical quantitative genetic approach has stressed the905

importance of considering the genetic architecture of traits906

for understanding evolutionary processes, and has placed907

particular emphasis on the use of multi-locus models (Bulmer,908

1972; Chakraborty and Nei, 1982; Slatkin, 1987; Turelli and909

Barton, 1994; Barton and Turelli, 2004; Barton et al., 2017;910

Walsh and Lynch, 2018). The advantage of this approach is911

its clear connection with explicit genetic details. However, its912

primary challenge is the manipulation of complex expressions913

that emerge at such level of detail. To overcome this, and914

establish a flexible tool for modelling the integrated ecological915

and evolutionary dynamics of populations carrying multivariate916

traits, I struck a balance between incorporating genetic detail917

and analytical tractability. As a consequence, this framework918

has potential for wide-spread use across topics in evolution,919

ecology, and population biology.920

A central feature of this framework is that a wide range of921

classical models can be obtained by choosing an appropriate922

fitness function m. For example, stochastic Lotka-Volterra923

dynamics for a community of species is obtained from this924

framework by applying the growth rate mi = ri +
∑
j αijnj925

for species i, with nj being the abundance of species j and926

αij the interaction coefficient. This provides an approach to927

derive an analytical alternative to the simulation model of928

stochastic Lotka-Volterra dynamics studied by Huang et al.929

(2015). In addition, by making the interaction coefficients930

αij dependent on multivariate trait values zi, zj , models931

integrating coevolution with abundance feedbacks can be932

obtained similar to those studied by Gokhale et al. (2013),933

Cortez and Weitz (2014), and Patel et al. (2018). As a special934

case, continuous time analogs of multivariate coevolution935

models are obtained by focusing on two species with fixed (or936

infinite) abundances, and assuming αij(zi, zj) depends on the937

Euclidean distance between zi and zj (Gilman et al., 2012;938

Débarre et al., 2014). Klausmeier et al. (2020) studied models939

of evolutionary rescue with univariate traits using growth rates940

of the forms m(z, t) = r − ψ(θ(t) − z)2/2 and m(z, t) =941

r + r0e
−ψ(θ(t)−z)2/2, where θ(t) is a dynamic phenotypic942

optimum and ψ is the strength of stabilizing selection. Applying943

multivariate generalizations of these growth rates to the above944

framework leads to extensions of an evolutionary rescue model945

involving demographic stochasticity studied by Xu et al. (2023).946

Additionally, Jones et al. (2012) also studied a model of947

phenotypic adaptation to a dynamic optimum, but in the948

context of G-matrix evolution. This framework can then be949

used as a bridge between research topics such as evolutionary950

rescue and G-matrix evolution. This list provides a small set951

of examples for how this framework can be used to derive new952

models across a broad range of topics in ecology, evolution, and953

population biology.954

Further work is needed to extend this framework in several955

directions. For instance, it is possible to incorporate sexual956

reproduction and recombination by assuming each trait value,957

instead of being encoded by a single genetic value gi, is958

encoded by the sum of two genetic values gi + g′i that result959

from convex combinations of the parental values. How to960

formalize this using measure-valued processes is not obvious. In 961

another direction, environmental stochasticity (i.e., stochastic 962

growth rates) can be formally incorporated in a measure-valued 963

context following the work of Mytnik (1996). Extending the 964

framework in this direction may yield important additional 965

insights complementing the work of Lande (2007; 2008), who 966

studied the consequences of environmental stochasticity for 967

long-run population growth rates. An extension in this direction 968

may also be useful for studies investigating the consequences of 969

environmental stochasticity on G-matrix evolution (e.g., Engen 970

and Sæther, 2024). Lastly, I point to a possible extension that 971

accounts for the the evolution of the mutation matrix µµµ. Doing 972

so enables derivation of analytical and simulation models for 973

the evolution of evolvability similar to that studied by Jones et 974

al. (2007), and may yield more precise quantitative predictions 975

amenable to experimental study (Mallard et al., 2023a). 976

The application of this framework to study G-matrix 977

evolution uncovered a more nuanced picture for the role of 978

drift than what conventional wisdom suggests (Phillips and 979

McGuigan, 2006). In particular, although drift indeed scales 980

G-matrices when averaged over many replicated populations, 981

it also drives trait correlations towards their extremes within 982

populations. This agrees with the result that the expected 983

eigenvalues of G differ from the eigenvalues of the expectation 984

of G under drift (Griswold et al., 2007). In addition, the impact 985

of drift on genetic correlations can be understood as a reduction 986

in the effective dimensionality of G-matrices (Hine and Blows, 987

2006), reflecting an extension of the principle that drift erodes 988

heritable variation. That is, because drift drives pairwise 989

correlations to ±1, the distribution of multivariate traits in a 990

population that has been evolving solely under drift may be well 991

approximated after projecting onto a lower-dimensional trait 992

space. Conceptually, this is similar to dimensionality reduction 993

techniques such as principal components analysis (Kirkpatrick 994

and Meyer, 2004). Importantly, this effect of drift on 995

trait correlations calls into question comparative quantitative 996

genetic methods utilizing G-matrices to detect selection in 997

diverged populations (Roff, 2000; Steppan et al., 2002; Phillips 998

and McGuigan, 2006; Cano et al., 2004; McGuigan, 2006; 999

Chapuis et al., 2008; Aguirre et al., 2013; Dugand et al., 2021; 1000

Mallard et al., 2023a). These findings have broad implications 1001

for evolutionary biology, highlighting the need for revised 1002

theoretical perspectives and further empirical validation. 1003

The study of genetic correlations and G-matrix dynamics 1004

using this framework can be extended by studying equation 1005

(20) with mutation and selection. In the special case of one- 1006

dimensional traits, stabilizing selection, and no abundance 1007

dynamics, the theory of one-dimensional diffusions (Etheridge, 1008

2010) can be used to show that the stationary distribution 1009

of additive genetic variance follows a generalized inverse 1010

Gaussian distribution (Jorgensen, 2012). This suggests the 1011

stationary distribution of G may follow a matrix-variate 1012

generalization, such as the matrix generalized inverse Gaussian 1013

(MGIG) distribution (Fazayeli and Banerjee, 2016). Proposed 1014

distributions may be checked by evaluating the forwards 1015

Kolmogorov equation associated with equation (20) at 1016

equilibrium assuming a solution that follows the density of 1017

the proposal. Identification of the stationary distribution for 1018

(20) may then be used to study the distribution of genetic 1019

correlations maintained by interactions between mutation, 1020

selection, and random genetic drift. 1021

In summary, this work introduces a versatile framework 1022

for modeling the stochastic eco-evolutionary dynamics of 1023

multivariate traits, providing a unifying approach that 1024
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integrates mutation, selection, demographic stochasticity, and1025

drift. By balancing mathematical rigor with accessibility, this1026

framework enables the derivation of new models across a broad1027

spectrum of population biology, making it a valuable tool1028

for both theoretical and applied researchers. With its broad1029

applicability, the framework presented here offers a foundation1030

for future studies investigating the dynamics of populations in1031

both theoretical and empirical contexts.1032
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differentiation in g matrix structure due to natural selection 1103

in rana temporaria. Evolution, 58(9):2013–2020, Sept. 2004. 1104

ISSN 1558-5646. doi: 10.1111/j.0014-3820.2004.tb00486.x. 1105

URL http://dx.doi.org/10.1111/j.0014-3820.2004.tb00486. 1106

x. 1107

R. Chakraborty and M. Nei. Genetic differentiation of 1108

quantitative characters between populations or species: I. 1109

mutation and random genetic drift. Genetical Research, 1110

39(3):303–314, June 1982. ISSN 1469-5073. doi: 10. 1111

1017/s0016672300020978. URL http://dx.doi.org/10.1017/ 1112

S0016672300020978. 1113

E. Chapuis, G. Martin, and J. Goudet. Effects of selection and 1114

drift on g matrix evolution in a heterogeneous environment: 1115

A multivariateqst–fst test with the freshwater snailgalba 1116

truncatula. Genetics, 180(4):2151–2161, Dec. 2008. ISSN 1117

1943-2631. doi: 10.1534/genetics.108.092452. URL http: 1118

//dx.doi.org/10.1534/genetics.108.092452. 1119

G. W. A. Constable, T. Rogers, A. J. McKane, and C. E. 1120

Tarnita. Demographic noise can reverse the direction 1121

of deterministic selection. Proceedings of the National 1122

Academy of Sciences, 113(32), July 2016. ISSN 1091-6490. 1123

doi: 10.1073/pnas.1603693113. URL http://dx.doi.org/10. 1124

1073/pnas.1603693113. 1125

M. H. Cortez and J. S. Weitz. Coevolution can reverse 1126

predator–prey cycles. Proceedings of the National Academy 1127

of Sciences, 111(20):7486–7491, May 2014. ISSN 1091-6490. 1128

doi: 10.1073/pnas.1317693111. URL http://dx.doi.org/10. 1129

1073/pnas.1317693111. 1130

D. Dawson. Measure-valued Markov processes, page 1–260. 1131

Springer Berlin Heidelberg, 1993. ISBN 9783540476085. 1132

doi: 10.1007/bfb0084190. URL http://dx.doi.org/10.1007/ 1133

BFb0084190. 1134

U. Dieckmann and R. Law. The dynamical theory of 1135

coevolution: a derivation from stochastic ecological processes. 1136

Journal of Mathematical Biology, 34(5–6):579–612, May 1137

1996. ISSN 1432-1416. doi: 10.1007/bf02409751. URL 1138

http://dx.doi.org/10.1007/bf02409751. 1139

R. J. Dugand, J. D. Aguirre, E. Hine, M. W. Blows, and 1140

K. McGuigan. The contribution of mutation and selection 1141

to multivariate quantitative genetic variance in an outbred 1142

population of drosophila serrata. Proceedings of the National 1143

Academy of Sciences, 118(31), July 2021. ISSN 1091-6490. 1144

doi: 10.1073/pnas.2026217118. URL http://dx.doi.org/10. 1145

1073/pnas.2026217118. 1146

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 11, 2025. ; https://doi.org/10.1101/2025.06.07.658444doi: bioRxiv preprint 

http://dx.doi.org/10.1038/hdy.2013.12
http://dx.doi.org/10.1038/hdy.2013.12
http://dx.doi.org/10.1038/hdy.2013.12
http://dx.doi.org/10.1098/rspa.2023.0284
http://dx.doi.org/10.1111/j.1558-5646.2008.00472.x
http://dx.doi.org/10.1111/j.1558-5646.2008.00472.x
http://dx.doi.org/10.1111/j.1558-5646.2008.00472.x
http://dx.doi.org/10.1017/S0016672300028378
http://dx.doi.org/10.1017/S0016672300028378
http://dx.doi.org/10.1017/S0016672300028378
http://dx.doi.org/10.1111/j.0014-3820.2004.tb01591.x
http://dx.doi.org/10.1111/j.0014-3820.2004.tb01591.x
http://dx.doi.org/10.1111/j.0014-3820.2004.tb01591.x
http://dx.doi.org/10.1016/j.tpb.2017.06.001
http://dx.doi.org/10.1016/j.tpb.2017.06.001
http://dx.doi.org/10.1016/j.tpb.2017.06.001
http://dx.doi.org/10.1017/S0016672300026951
http://dx.doi.org/10.1017/S0016672300026951
http://dx.doi.org/10.1017/S0016672300026951
http://dx.doi.org/10.1186/s13662-018-1466-5
http://dx.doi.org/10.1186/s13662-018-1466-5
http://dx.doi.org/10.1186/s13662-018-1466-5
http://dx.doi.org/10.1086/733196
http://dx.doi.org/10.1086/733196
http://dx.doi.org/10.1086/733196
http://dx.doi.org/10.1017/S0016672300014221
http://dx.doi.org/10.1017/S0016672300014221
http://dx.doi.org/10.1017/S0016672300014221
http://dx.doi.org/10.1007/BF00275642
http://dx.doi.org/10.1007/BF00275642
http://dx.doi.org/10.1007/BF00275642
http://dx.doi.org/10.1111/j.0014-3820.2004.tb00486.x
http://dx.doi.org/10.1111/j.0014-3820.2004.tb00486.x
http://dx.doi.org/10.1111/j.0014-3820.2004.tb00486.x
http://dx.doi.org/10.1017/S0016672300020978
http://dx.doi.org/10.1017/S0016672300020978
http://dx.doi.org/10.1017/S0016672300020978
http://dx.doi.org/10.1534/genetics.108.092452
http://dx.doi.org/10.1534/genetics.108.092452
http://dx.doi.org/10.1534/genetics.108.092452
http://dx.doi.org/10.1073/pnas.1603693113
http://dx.doi.org/10.1073/pnas.1603693113
http://dx.doi.org/10.1073/pnas.1603693113
http://dx.doi.org/10.1073/pnas.1317693111
http://dx.doi.org/10.1073/pnas.1317693111
http://dx.doi.org/10.1073/pnas.1317693111
http://dx.doi.org/10.1007/BFb0084190
http://dx.doi.org/10.1007/BFb0084190
http://dx.doi.org/10.1007/BFb0084190
http://dx.doi.org/10.1007/bf02409751
http://dx.doi.org/10.1073/pnas.2026217118
http://dx.doi.org/10.1073/pnas.2026217118
http://dx.doi.org/10.1073/pnas.2026217118
https://doi.org/10.1101/2025.06.07.658444
http://creativecommons.org/licenses/by/4.0/


Multivariate Eco-Evo 13
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